
The information in this guide applies to instruments having the number prefix listed
below, unless accompanied by a “Manual Updating Changes” package indicating
otherwise.

SERIAL PREFIX NUMBER: 3711 and above

Programming Guide

Frequency Counter

This guide describes how to program the Agilent 53181A 225 MHz Frequency Counter.

Agilent 53181A 225 MHz

All Rights Reserved.
Reproduction, adaptation, or
translations without prior written
permission is prohibited, except
as allowed under the copyright
laws.

Manual part number
53181-90002

Certification
and Warranty

Certification

certifies that its calibration
measurements are traceable to the
United States National Institute
of Standards and Technology
(formerly National Bureau of
Standards), to the extent allowed
by the Institute's calibration
facility, and to the calibration
facilities of other International
Standards Organization
members.

Warranty

workmanship for a period of
three years from date of
shipment. During the warranty

For detailed warranty
information, see back matter.

Safety Considerations

General

This product and related
documentation must be reviewed
for familiarization with this
safety markings and instructions
before operation.

This product is a safety Class I
instrument (provided with a
protective earth terminal).

Before Cleaning

Disconnect the product from
operating power before cleaning.

Before Applying Power

Verify that the product is set to
match the available line voltage
and the correct fuse is installed.
Refer to instructions in Chapter 1
(page 1-11) of the Manual.

Safety Earth Ground

An uninterruptible safety earth
ground must be provided from
the mains power source to the
product input wiring terminals or
supplied power cable.

Warning Symbols That May
Be Used In This Book

Instruction manual symbol; the
product will be marked with this
symbol when it is necessary for
the user to refer to the instruction
manual.

Indicates hazardous voltages.

Safety Considerations
(contd)

Indicates earth (ground) terminal.

or

Indicated terminal is connected to
chassis when such connection is
not apparent.

Indicates Alternating
current.

Indicates Direct current.

WARNING
BODILY INJURY OR DEATH
MAY RESULT FROM
FAILURE TO HEED A
WARNING. DO NOT
PROCEED BEYOND A
WARNING SIGN UNTIL THE
INDICATED CONDITIONS
ARE FULLY UNDERSTOOD
AND MET.

CAUTION
Damage to equipment, or
incorrect measurement
data, may result from
failure to heed a caution. Do
not proceed beyond a
CAUTION sign until the
indicated conditions are
fully understood and met.

For additional safety and
acoustic noise information, see
back matter.

 Copyright 1994-2003
Agilent Technologies, Inc.

Printed: November 2003

Printed in U.S.A.

Agilent Technologies certifies
that this product met its published
specification at the time of

Agilent Technologies further
shipment from the factory.

This Agilent Technologies

against defects in material and
instrument product is warranted

period, Agilent Technologies
will, at its option, either repair

to be defective.
or replace products which prove

Agilent Technologies, Inc.
815 14th Street S.W.
Loveland, Colorado 80537 U.S.A.

iii

1 Before You Start . . .
Introduction 1-2

Getting Started 1-3

How to Use This Guide 1-3
New Users 1-3

What You Should Understand 1-3
Learning to Program the Counter 1-4

Experienced Programmers 1-4
Applications 1-5

Programming Guide Contents 1-6

Assumptions 1-6

Related Documentation 1-7

2 Commands Summary
Introduction 2-2

Chapter Summary 2-2

Front Panel to SCPI Command Maps 2-3

SCPI Conformance Information 2-16
IEEE 488.2 Common Commands 2-17

Std/New Column 2-20
Parameter Form Column 2-20

*RST Response 2-32

3 Programming Your Counter for Remote Operation
Introduction 3-2

Chapter Summary 3-2
Where to Find Some Specific Information 3-2

Where to Find QuickBASIC Programming Examples 3-3
Where to Find Turbo C Programming Examples 3-3

Contents

Agilent 53181A Command Summary 2-16

Agilent 53181A SCPI Subsystem Commands 2-20

Where to Find BASIC Programming Examples 3-3

Contents

iv

To Connect the Counter to a Computer 3-6
Remote/Local Operation 3-6

Overview of Command Types and Formats 3-7
Common Command Format 3-7
SCPI Command and Query Format 3-7

Elements of SCPI Commands 3-8
Subsystem Command Syntax 3-8
Common Command Syntax 3-8
Abbreviated Commands 3-9
Keyword Separator 3-9
Optional Keyword 3-10
Parameter Types 3-11
Parameter Separator 3-12
Query Parameters 3-12
Suffixes 3-12

Suffix Elements 3-12
Suffix Multipliers 3-13

Command Terminator 3-13

Using Multiple Commands 3-14
Program Messages 3-14
Program Message Syntax 3-14

Overview of Response Message Formats 3-16
Response Messages 3-16
Response Message Syntax 3-16
Response Message Data Types 3-18

Status Reporting 3-20
Status Byte Register and Service Request Enable Register 3-22

Status Byte Register 3-22
Service Request Enable Register 3-24

Standard Event Status Register Group 3-25
Standard Event Status Register 3-25
Standard Event Status Enable Register 3-28

Configuring the GPIB 3-4
To Set the GPIB Mode and Address 3-4

Contents

v

Operation Status Register Group and Questionable Data/Signal
Status Register Group 3-28

Condition Register 3-30
Transition Filter 3-30
Event Register 3-31
Event Enable Register 3-31
Operation Status Register Group 3-32
Questionable Data/Signal Status Register Group 3-34

Command Settings for Optimizing Throughput 3-37
Commands to Set Counter for Optimal Throughput 3-37
Typical Optimizing Throughput Results for Different Computers 3-39

How to Program the Counter for Status Reporting 3-40
Determining the Condition of the Counter 3-40

Example 1 3-40
Using the Standard Event Status Register to Trap an Incorrect

Event Status Register 3-41
Using the Questionable Data/Signal Status Register to Alert the Computer When
Automatic Interpolator Calibration is Disabled— Example 3 3-41

Questionable Data Status Register 3-42
Using the Operation Status Register to Alert the Computer When Measuring has
Completed— Example 4 3-42

Operation Status Register 3-42

How to Program the Counter to Display Results 3-45
Configuring the Counter's Display 3-45
Commands for Displaying Non-Scaled/Offset Results 3-45
Commands for Displaying Scaled/Offset Results 3-46
Commands for Displaying the Limit Graph 3-46
Commands for Displaying Statistics Results 3-46
Commands for Enabling and Disabling the Display 3-47

How to Program the Counter to Synchronize Measurements 3-48
Synchronizing Measurement Completion 3-48

Using the *WAI Command 3-48
Using the *OPC? Command 3-49
Using the *OPC Command to Assert SRQ 3-50

Resetting the Counter and Clearing the GPIB Interface—

GPIB command— Example 2 3-41

Resetting the Counter and Clearing the GPIB Interface 3-48

Contents

vi

How to Program the Counter for Math/Limit Operations 3-51

How to Program the Counter to Define Macros 3-54

Writing SCPI Programs 3-57

Programming Examples 3-60

To Send a Double-Quoted String 3-60
To Send a Single-Quoted String 3-60

Using QuickBASIC 3-61
Using Turbo C 3-61
List of the Programming Examples 3-61

To Make a Frequency Measurement (QuickBASIC) 3-75
To Perform Limit Testing (QuickBASIC) 3-76
To Measure the Statistics of 50 Measurements (QuickBASIC) 3-78
To Use Limits to Filter Data Before Measuring Stats
(QuickBASIC) 3-80

To Read and Store Calibration Data (QuickBASIC) 3-82
To Optimize Throughput (QuickBASIC) 3-83
To Use Macros (QuickBASIC) 3-85
To Make a Frequency Measurement (Turbo C) 3-88
To Use Limits to Filter Data Before Measuring Statistics
(Turbo C) 3-90

To Optimize Throughput (Turbo C) 3-93

Updating Math and Limit Results Over GPIB 3-51
Using the Scale and Offset Over GPIB 3-52

Using BASIC 3-60

Easiest Way to Make a Measurement (BASIC) 3-62

To Perform Limit Testing (BASIC) 3-65
To Measure the Statistics of 50 Measurements(BASIC) 3-66

To Read and Store Calibration Information (BASIC) 3-70
To Use Limits to Filter Data Before Measuring Stats (BASIC) 3-68

To Optimize Throughput (BASIC) 3-71
To Use Macros (BASIC) 3-73

To Make a Frequency Measurement (BASIC) 3-64

Contents

vii

4 Commands Reference
Introduction 4-2

:ABORt 4-4

:CALCulate Subsystems 4-5

:CALCulate[1] Subsystem 4-7
:CALCulate[1]:DATA? 4-7
:CALCulate[1]:FEED "[:]SENSe[1]" 4-8
:CALCulate[1]:IMMediate 4-8
:CALCulate[1]:IMMediate:AUTO 4-9
:CALCulate[1]:MATH Subtree 4-9

:CALCulate[1]:MATH[:EXPRession]:CATalog? 4-9
:CALCulate[1]:MATH[:EXPRession][:DEFine]? 4-10
:CALCulate[1]:MATH[:EXPRession]:NAME
SCALE_OFFSET 4-10

:CALCulate[1]:MATH[:EXPRession]:SELect
SCALE_OFFSET 4-10

:CALCulate[1]:MATH:STATe 4-10

:CALCulate2 Subsystem 4-11
:CALCulate2:FEED "[:]CALCulate[1]" 4-11
:CALCulate2:IMMediate 4-11
:CALCulate2:IMMediate:AUTO 4-12
:CALCulate2:LIMit Subtree 4-12

:CALCulate2:LIMit:CLEar:AUTO 4-13
:CALCulate2:LIMit:CLEar[:IMMediate] 4-13
:CALCulate2:LIMit:DISPlay 4-13
:CALCulate2:LIMit:FAIL? 4-14
:CALCulate2:LIMit:FCOunt:LOWer? 4-15
:CALCulate2:LIMit:FCOunt[:TOTal]? 4-15
:CALCulate2:LIMit:FCOunt:UPPer? 4-15
:CALCulate2:LIMit:LOWer[:DATA] 4-16
:CALCulate2:LIMit:PCOunt[:TOTal]? 4-17
:CALCulate2:LIMit:STATe 4-17
:CALCulate2:LIMit:UPPer[:DATA] 4-18

Contents

viii

:CALCulate3 Subsystem 4-19
:CALCulate3:AVERage Subtree 4-19

:CALCulate3:AVERage:ALL? 4-19
:CALCulate3:AVERage:CLEar 4-20
:CALCulate3:AVERage:COUNt 4-20
:CALCulate3:AVERage:COUNt:CURRent? 4-21
:CALCulate3:AVERage[:STATe] 4-21
:CALCulate3:AVERage:TYPE 4-22

:CALCulate3:DATA? 4-22
:CALCulate3:FEED "[:]CALCulate[1]" 4-23
:CALCulate3:LFILter Subtree 4-23

:CALCulate3:LFILter:LOWer[:DATA] 4-23
:CALCulate3:LFILter:STATe 4-24
:CALCulate3:LFILter:UPPer[:DATA] 4-24

:CALCulate3:PATH? 4-25

:CALibration Subsystem 4-26
:CALibration[:ALL]? 4-26
:CALibration:COUNt? 4-26
:CALibration:DATA 4-27
:CALibration:SECurity Subtree 4-28

:CALibration:SECurity:CODE 4-28
:CALibration:SECurity:STATe 4-28

:CONFigure Subsystem 4-30

Device Clear 4-31

:DIAGnostic Subsystem 4-32
:DIAGnostic:CALibration:INPut[1]:GAIN:AUTO 4-32
:DIAGnostic:CALibration:INPut[1]:OFFSet:AUTO 4-33
:DIAGnostic:CALibration:INTerpolator:AUTO 4-33
:DIAGnostic:CALibration:ROSCillator:AUTO 4-34
:DIAGnostic:CALibration:STATus? 4-34
:DIAGnostic:MEASure:RESolution? 4-35

Contents

ix

:DISPlay Subsystem 4-36
:DISPlay:ENABle 4-36
:DISPlay:MENU[:STATe] OFF 4-36
:DISPlay[:WINDow]:TEXT:FEED "[:]CALCulate2" |
"[:]CALCulate3" 4-37

:DISPlay[:WINDow]:TEXT:MASK 4-38
:DISPlay[:WINDow]:TEXT:RADix 4-39

:FETCh Subsystem 4-40

:FORMat Subsystem 4-41
:FORMat[:DATA] 4-41

Group Execute Trigger(GET) 4-42

:HCOPy Subsystem 4-43
:HCOPy:CONTinuous 4-43

:INITiate Subsystem 4-44
:INITiate:AUTO 4-44
:INITiate:CONTinuous 4-44
:INITiate[:IMMediate] 4-46

:INPut[1] Subsystem 4-48
:INPut[1]:ATTenuation 4-48
:INPut[1]:COUPling 4-48
:INPut[1]:FILTer[:LPASs][:STATe] 4-48
:INPut[1]:FILTer[:LPASs]:FREQuency? 4-49
:INPut[1]:IMPedance 4-49

:INPut2 Subsystem 4-50
:INPut2:COUPling? 4-50
:INPut2:IMPedance? 4-50

:MEASure Subsystem 4-51

Measurement Instructions 4-52
:CONFigure 4-53
:CONFigure? 4-54
:FETCh 4-55
:MEASure 4-56

Contents

x

:READ 4-57
:MEASure[:SCALar][:VOLTage]:FREQuency? 4-59
:MEASure[:SCALar][:VOLTage]:FREQuency:RATio? 4-61
:MEASure[:SCALar][:VOLTage]:MAXimum? 4-62
:MEASure[:SCALar][:VOLTage]:MINimum? 4-62
:MEASure[:SCALar][:VOLTage]:PERiod? 4-63
:MEASure[:SCALar][:VOLTage]:PTPeak? 4-64
Using :MEAsure 4-65
Using :CONFigure with :READ? 4-66
Using :CONFigure with :INITiate and :FETCh? 4-66

:MEMory Subsystem 4-68
:MEMory:DELete:MACRo 4-68
:MEMory:FREE:MACRo? 4-68
:MEMory:NSTates? 4-68

[:SENSe] Subsystem 4-69
[:SENSe]:DATA? ["[:]SENSe[1]"] 4-69
[:SENSe]:EVENt[1] Subtree 4-69

[:SENSe]:EVENt[1]:HYSTeresis:RELative 4-69
[:SENSe]:EVENt[1]:LEVel[:ABSolute] 4-70
[:SENSe]:EVENt[1]:LEVel[:ABSolute]:AUTO 4-71
[:SENSe]:EVENt[1]:LEVel:RELative 4-71
[:SENSe]:EVENt[1]:SLOPe 4-72

[:SENSe]:EVENt2 Subtree 4-72
[:SENSe]:EVENt2:LEVel[:ABSolute]? 4-72
[:SENSe]:EVENt2:SLOPe? 4-73

[:SENSe]:FREQuency Subtree 4-73
[:SENSe]:FREQuency:ARM Subtree 4-73
[:SENSe]:FREQuency:ARM[:STARt]:SLOPe 4-73
[:SENSe]:FREQuency:ARM[:STARt]:SOURce 4-74
[:SENSe]:FREQuency:ARM:STOP:DIGits 4-74
[:SENSe]:FREQuency:ARM:STOP:SLOPe 4-75
[:SENSe]:FREQuency:ARM:STOP:SOURce 4-75
[:SENSe]:FREQuency:ARM:STOP:TIMer 4-75

[:SENSe]:FREQuency:EXPected[1|2] 4-76
[:SENSe]:FREQuency:EXPected[1|2]:AUTO 4-77
[:SENSe]:FUNCtion[:ON] 4-77

Contents

xi

[:SENSe]:ROSCillator Subtree 4-79
[:SENSe]:ROSCillator:EXTernal:CHECk 4-79
[:SENSe]:ROSCillator:EXTernal:FREQuency? 4-79
[:SENSe]:ROSCillator:SOURce 4-80
[:SENSe]:ROSCillator:SOURce:AUTO 4-80

:STATus Subsystem 4-82
:STATus:OPERation Subtree 4-82

:STATus:OPERation:CONDition? 4-82
:STATus:OPERation:ENABle 4-83
:STATus:OPERation[:EVENt]? 4-83
:STATus:OPERation:NTRansition 4-84
:STATus:OPERation:PTRansition 4-84

:STATus:PRESet 4-85
:STATus:QUEStionable Subtree 4-86

:STATus:QUEStionable:CONDition? 4-86
:STATus:QUEStionable:ENABle 4-87
:STATus:QUEStionable[:EVENt]? 4-87
:STATus:QUEStionable:NTRansition 4-88
:STATus:QUEStionable:PTRansition 4-88

:SYSTem Subsystem 4-90
:SYSTem:COMMunicate Subtree 4-90

:SYSTem:COMMunicate:SERial:CONTrol:DTR 4-90
:SYSTem:COMMunicate:SERial:TRANsmit:BAUD 4-91
:SYSTem:COMMunicate:SERial:TRANsmit:PARity[:TYPE] 4-92
:SYSTem:COMMunicate:SERial:TRANsmit:PACE 4-92

:SYSTem:ERRor? 4-92
:SYSTem:KEY 4-94
:SYSTem:KEY:LOG? 4-95
:SYSTem:VERSion? 4-95

:TRACe Subsystem 4-96
:TRACe:CATalog? 4-96
:TRACe[:DATA] OFFSET 4-96
:TRACe[:DATA]? OFFSET 4-96
:TRACe[:DATA] SCALE 4-97
:TRACe[:DATA]? SCALE 4-97

:TRIGger Subsystem 4-98
:TRIGger:COUNt:AUTO 4-98

Contents

xii

*CAL?(Calibration Query) 4-99

*CLS(Clear Status Command) 4-100

*DDT(Define Device Trigger Command) 4-101

*DMC(Define Macro Command) 4-102

*EMC(Enable Macro Command) 4-103

*EMC?(Enable Macro Query) 4-103

*ESE(Standard Event Status Enable Command) 4-104

*ESE?(Standard Event Status Enable Query) 4-104

*ESR?(Event Status Register Query) 4-106

*GMC?(Get Macro Contents Query) 4-107

*IDN?(Identification Query) 4-108

*LMC?(Learn Macro Query) 4-109

*OPC(Operation Complete Command) 4-110

*OPC?(Operation Complete Query) 4-111

*OPT?(Option Identification Query) 4-112

*PMC(Purge Macro Command) 4-113

*RCL(Recall Command) 4-114

*RST(Reset Command) 4-116

*SAV(Save Command) 4-117

*SRE(Service Request Enable Command) 4-119

*SRE?(Service Request Enable Query) 4-119

*STB?(Status Byte Query) 4-120

*TRG(Trigger Command) 4-121

*TST?(Self-Test Query) 4-122

*WAI(Wait-to-Continue Command) 4-123

Contents

xiii

5 Errors
Introduction 5-2

Displaying Errors 5-2

Reading an Error 5-2

Error Queue 5-3

Error Types 5-4
No Error 5-4
Command Error 5-4
Execution Error 5-5
Device- or Counter-Specific Error 5-5
Query Error 5-6

Index

Contents

xiv

1

Before You Start ...

Before You Start ...
Introduction

1-2

Introduction
This programming guide contains programming information for the

This guide assumes you are familiar with the front-panel operation of the Counter.

operation. You should use this programming guide together with the operating
guide. Knowing how to control the Counter from the front panel and understanding
the measurements you wish to perform makes the programming task much easier.
The operating guide provides explanations and task procedures for all of the
Counter's measurement functions, and contains the specifications for the Counter.

By sending Standard Commands for Programmable Instruments (SCPI) commands,
all of the Counter's front-panel functions can be remotely operated via the General-

function not available from the front panel.

This Counter programming commands conform to the Standard Commands for
Programmable Instruments (SCPI) Standard Version 1992.0. The SCPI standard
does not completely redefine how to program instruments over the General-Purpose

instrument's command set to reflect the best programming practices developed by

functions in all of the instruments that conform to the SCPI standard.

few years, you will have seen a general trend toward the techniques specified in the
SCPI standard. For example, several instruments are already using a hierarchy of
commands that is similar to the command structure defined by the SCPI standard.

Agilent 53181A Frequency Counter.

See the Agilent 53181A Operating Guide for detailed information about front-panel

Purpose Interface Bus (GPIB), as well as the additional throughput optimizing

Interface Bus (GPIB). However, it does standardize the structure and content of an

people using GPIB. It also establishes standard command mnemonics for similar

If you have programmed any Agilent instruments that have been released over the last

Before You Start ...
Getting Started

1-3

Getting Started
Before attempting to program the Counter, take some time to familiarize yourself
with the content of this guide. The remainder of this chapter contains the following
information:

• An explanati on of how you should use the programming guide based on your
experience programming instruments and your testing requirements.

• A description of the guide contents.

• A statement of assumptions that are made in the guide.

• A list of related documentation.

How to Use This Guide
How you use this guide depends upon how much you already know about
programming instruments and how complex your measurement requirements are.
Let's start by establishing your programming background, and then discuss the type
of measurements you want to perform.

New Users
What You Should Understand

As a new user, you should understand that you must have some understanding of a
high-level language such as Pascal, BASIC, C, or FORTRAN before you can use
the command set defined in this guide to control the Counter. (In Chapter 3,
“Programming Your Counter for Remote Operation,” there are programming

Turbo C.) However, whatever language you use, command strings that control the
Counter remain the same.

examples provided in BASIC, Microsoft  QuickBASIC, and Borland 

Before You Start ...
How to Use This Guide

1-4

Learning to Program the Counter

To learn how to program the Counter, perform the following:

• Scan the summary tables in Chapter 2, “Commands Summary,”
to get a feeling for the number and structure of commands available to you.

• Read and study map drawings in the section titled “Front Panel to SCPI
Command Maps” in Chapter 2.

• Read Chapter 3, “Programming Your Counter for Remote Operation,” for an

Counter. Look at the flowcharts, which illustrate some of the decisions you
must make when programming the Counter.

• Read the section at the end of Chapter 3 title d “Programming Examples for
Making Common Measurements,” which provides programming examples.

• Modify some of the programming examples to select specific measurement
functions. If the programs work, consider yourself an experienced
programmer and use Chapter 4, “Commands Reference,” as a reference for
detailed information of all the Counter's SCPI commands.

Experienced Programmers

with many of the concepts and techniques discussed in this guide. Also, you will

commands. The main difference is the hierarchy of the subsystem commands.
(However, this type of structure has been previously used on other instruments.)

Because the SCPI command set and some of the status reporting techniques are
new, you may want to use the following sequence to learn the Counter programming
requirements:

• Look over the steps for a new user and perform any that you think are
applicable to your current level of knowledge. In particular, look at the
measurement techniques and examples provide in Chapter 3, “Programming
Your Counter for Remote Operation.”

overview of the SCPI concepts as they relate to the Agilent 53181A Frequency

If you have programmed other GPIB instruments, you will probably be familiar

find that using the SCPI commands is very similar to using the older GPIB

Before You Start ...
How to Use This Guide

1-5

• Review the summary tables in Chapter 2, “Commands Summary.” If this
chapter contains sufficient information to get you started, write some
programs to explore the Counter's capabilities. If you need additional
information on any command, refer to the applicable command description in
Chapter 4, “Commands Reference.”

• Review the remaining information in this guide to determine what is
applicable to your programming requirements.

If you need more information than is contained in this guide, see the section in this
chapter titled “Related Documentation.”

Applications
After you have read the appropriate information and written some measurement
programs, you may want to expand the scope of your applications. The following
two techniques are explained in detail:

• If you are going to write interrupt-driven programs (or if you just want to
determine the status of the Counter), read the section titled “Status
Reporting” in Chapter 3.

• If you are going to write programs to transfer data between the Counter and
an external computer, read the sections titled “Overview of Response Message
Formats,” and “Command Settings for Optimizing Throughput” in Chapter
3.

Before You Start ...
Programming Guide Contents

1-6

Programming Guide Contents
The following information is contained in this guide:

• Table of Contents

• Chapter 1 (this chapter) ,“Before You Start,” is a preface that introduces you
to the programming guide.

• Chapter 2, “Commands Summary,” is a quick reference that summarizes the
Counter's programming commands. It provides you with front-panel to SCPI
command maps, SCPI conformance information, and command summary
tables.

• Chapter 3, “Programming Your Counter for Remote Operation,” describes
how to setup the Counter for remote operation, briefly explains the SCPI
elements and formats, describes status reporting, describes how to write
programs, and provides programming examples for each of the main tasks
that you will want your Counter to perform.

• Chapter 4, “Commands Refer ence,” is a dictionary that describes the SCPI
subsystems and IEEE 488.2 Common commands.

• Chapter 5, “Errors,” lists all the error messages the Counter can generate and
what caused the error.

• Index

Assumptions
This guide assumes the Counter is correctly installed and interfaced to an external

1987. (See the following section in this chapter titled “Related Documentation” for
ordering information.)

As previously mentioned, this guide also assumes you are familiar with the front-

information about front-panel operation. Knowing how to control the Counter from
the front panel and understanding the measurements you wish to perform makes the
programming task much easier.

computer. If it is not, see IEEE GPIB Interconnection information in

panel operation of the Counter. See the Agilent 53181A Operating Guide for detailed

Agilent
Technologies Inc, Tutorial Description of the General-Purpose Interface Bus,

Before You Start ...
Related Documentation

1-7

Related Documentation
This section contains a list of documentation related to the use of the Counter.
Additional information that you may find useful can be found in the following
publications:

Edition).

4. Standard Commands for Programmable Instruments (SCPI), Version
1992.0.

This standard is a guide for the selection of messages to be included in
programmable instrumentation . It is primarily intended for instrument
firmware engineers. However, you may find it useful if you are programming
more than one instrument that claims conformance to the SCPI standard. You
can verify the use of standard SCPI commands in different instruments.

To obtain a copy of this standard, contact:

SCPI Consortium
8380 Hercules, Suite P3
La Mesa, CA 91942
Phone: (619) 697-8790
FAX: (619) 697-5955

5. The International Institute of Electrical Engineers and Electronic
Engineers, IEEE Standard 488.1-1987, IEEE Standard Digital Interface
for Programmable Instrumentation.

This standard defines the technical details required to design and build an

and information on protocol that is beyond the need of most programmers.
However, it can be useful to clarify formal definitions of certain terms used in
related documents.

To obtain a copy of this standard, write to:

1. Agilent 53181A 225 MHz Frequency Counter Operating Guide (Agilent
Part Number 53181-90001)

2. Beginner's Guide to SCPI (Agilent Part Number H2325-90001, July 1990

GPIB (IEEE 488.1) interface . This standard contains electrical specification

Addison-Wesley Publishing Co. 1991).
3. Beginner's Guide to SCPI, Barry Eppler (Agilent Technologies Press,

Before You Start ...
Related Documentation

1-8

 The Institute of Electrical and Electronic Engineers Inc.
345 East 47th Street
New York, NY 10017 USA

6. The International Institute of Electrical Engineers and Electronic
Engineers, IEEE Standard 488.2-1987, IEEE Standard Codes, Formats,
Protocols, and Common Commands for Use with ANSI/IEEE Std 488.1-
1987 Programmable Instrumentation.

This standard defines the underlying message formats and data types used in
SCPI. It is intended more for firmware engineers than for instrument
users/programmers. However, it can be useful if you need to know the precise
definition of specific message formats, data type, or common commands.

To obtain a copy of this standard, write to:

The Institute of Electrical and Electronic Engineers Inc.
345 East 47th Street
New York, NY 10017 USA

BASIC 5.0/5.1 Interfacing Techniques Vol 2.,
Specific Interfaces, 1987.

programmers.

To obtain a copy of this manual, contact your nearest

To obtain a copy of this manual, contact your nearest

This BASIC manual contains a good non-technical description of the GPIB
(IEEE 488.1) interface in Chapter 12, “The GPIB Interface.” Subsequent
revisions of BASIC may use a slightly different title for this manual or
chapter. This manual is the best reference on I/O for BASIC

Agilent Technologies Sales office.

Agilent Technologies Sales office.

8. Agilent Technologies Inc, Tutorial Description of the

7. Agilent Technologies Inc,

General-Purpose Interface Bus, 1987.

2

Commands Summary
A Quick Reference

Commands Summary
Introduction

2-2

Introduction
This chapter is a quick reference that summarizes the Counter's programming
commands.

Chapter Summary
• Front Panel to SCPI Command Maps 1 pg. 2-3

• 2 pg. 2-16

– SCPI Conformance Information pg. 2-16

– IEEE 488.2 Common Commands pg. 2-17

pg. 2-20

• *RST Response 3 pg. 2-32

1The section titled “Front Panel to SCPI Command Maps,” provides maps that show the
front-panel keys and their corresponding (or related) SCPI commands.
2

Subsystem commands in Tables 2-1 and 2-2, respectively.

3The section titled *RST Response, lists the states of all of the commands that are affected by
the *RST command in Table 2-3. This section also lists commands that are unaffected by

*RST in Table 2-4.

Agilent 53181A Command Summary

– Agilent 53181A SCPI Subsystem Commands

The section titled “Agilent 53181A Command Summary,” lists the IEEE 488.2 Common and the SCPI

Commands Summary
Front Panel to SCPI Command Maps

2-3

Front Panel to SCPI Command Maps
Figures 2-1 through 2-6 provide maps that show the one-to-one relationship of the
front-panel keys and the SCPI commands. These maps should help with identifying
commands if you are already familiar with the front panel.

Some SCPI Syntax Conventions:

[] An element inside brackets is optional. Note, the brackets
are NOT part of the command and should NOT be sent to
the Counter.

1 | 2 Means use either 1 or 2.

<numeric_value> Means enter a number.

SENSe Means you MUST use either all the upper case letters or
the entire word. The lower case letters are optional. For
example, SENS and SENSE are both valid. However,
SEN is not valid. (Note SENSe is used here as an
example, but this convention is true for all SCPI
commands.)

When you see quotation marks in the command's parameter (shown in the
“Parameter Form” column in Table 2-2), you must send the quotation marks with

60) of this guide for details on how to use double quotes or single quotes to enclose
the string parameter of a command.

NOTE

the command. Refer to the section titled “Using BASIC” in Chapter 3 (page 3-

Commands Summary
Front Panel to SCPI Command Maps

2-4

*Channel 2 is optional.

Figure 2-1. Input Channels Conditioning Keys to SCPI Command Map
(Part 1 of 2)

Damage Lvl:
5V rms MAX.50Ω

!

1

2

3

4

5

X1 ATT

X10 ATT

AUTO TRG:

LEVEL: V

LEVEL: PCT

SLOPE:

SENSTVTY: LO

SENSTVTY: MED

SENSTVTY: HI

CHANNEL 1

CHANNEL 2

Damage Lvl:
5V rms MAX.50Ω

!

100 MHz to MAX

∗

DC
AC

50Ω
1MΩ

a1

a2

a

b1

b2

c

d1

d2

d3

Trigger
Sensitivity

X10
Attenuate

100kHz
Filter

50Ω
1MΩ

DC
AC

6

Trigger
Sensitivity

100kHz
Filter

X10
Attenuate

Commands Summary
Front Panel to SCPI Command Maps

2-5

1 a. [:SENSe]:EVENt:LEVel[:ABSolute]:AUTO ON|OFF

b1. [:SENSe]:EVENt:LEVel[:ABSolute] <numeric_value> [V]
b2. [:SENSe]:EVENt:LEVel:RELative <numeric_value> [PCT]

c. [:SENSe]:EVENt:SLOPe POSitive | NEGative

d1. [:SENSe]:EVENt:HYSTeresis:RELative 100
d2. [:SENSe]:EVENt:HYSTeresis:RELative 50
d3. [:SENSe]:EVENt:HYSTeresis:RELative 0

2 :INPut:IMPedance <numeric_value> [OHM]

3 :INPut:COUPling AC|DC

4 a1. :INPut:ATTenuation 1
a2. :INPut:ATTenuation 10

5 :INPut:FILTer ON | OFF

6 :INPut2:COUPling?
:INPut2:IMPedance?

Figure 2-1. Input Channels Conditioning Keys to SCPI Command Map
(Part 2 of 2)

Commands Summary
Front Panel to SCPI Command Maps

2-6

Figure 2-2. Instrument Control, Utility, Recall, and Save & Print Keys to
SCPI Command Map (Part 1 of 2)

1
REV:

GPIB:

TIMEBAS: INT

CAL HELP:

TEST LOOP:

TST PRINT:

TEST:

BAUD:

Local
Run Stop/

Single
Save &
Print

4

5

6

7

2 3

TIMEBAS: EXT

PARITY:

SW PACE:

DTR: LIMIT

DTR: HW PACE

TIMEBAS: AUTO

DTR: HIGH

SHOW 9 AS: 9.0

SHOW 9 AS: 9,0

a

b

c1

d

e

f

g

h

i

j

k1

k2

k3

l1

l2

c2

c3

Recall
Utility

Save &
Print

Run

Stop/
Single

Save &
Print

POWER

Recall
Utility

Utility Menu:
Hold at power up

Stop/
Single

POWER

Recall
Utility

Utility Menu:
Hold at power up

Commands Summary
Front Panel to SCPI Command Maps

2-7

1 a. *IDN?
b. No command

c1. [:SENSe]:ROSCillator:SOURce INTernal
c2. [:SENSe]:ROSCillator:SOURce EXTernal
c3. [:SENSe]:ROSCillator:SOURce:AUTO ON

d. No command (See Calibration menu, Figure 2-6)

e. No command
f. No command
g. *TST?

h. :SYSTem:COMMunicate:SERial:TRANsmit:BAUD <numeric_value>
i. :SYSTem:COMMunicate:SERial:TRANsmit:PARity[:TYPE]

EVEN | ODD | NONE
j. :SYSTem:COMMunicate:SERial:TRANsmit:PACE XON | NONE

k1. :SYSTem:COMMunicate:SERial:CONTrol:DTR LIMit
k2. :SYSTem:COMMunicate:SERial:CONTrol:DTR IBFull
k3. :SYSTem:COMMunicate:SERial:CONTrol:DTR ON

l1. :DISPlay[:WINDow]:TEXT:RADix DPOint
l2. :DISPlay[:WINDow]:TEXT:RADix COMMa

2 *SAV <NRf>

3 :INITiate:CONTinuous OFF (if running)
OR

:ABORt (if single measurement in progress)

4 *RCL <NRf>

5 :HCOPy:CONTinuous ON | OFF

6 :INITiate:CONTinuous ON (if in single)
OR

:ABORt (if running)

7 :INITiate[:IMMediate]

Figure 2-2. Instrument Control, Utility, Recall, and Save & Print Keys to
SCPI Command Map (Part 2 of 2)

Commands Summary
Front Panel to SCPI Command Maps

2-8

Figure 2-3. MEASURE Keys to SCPI Command Map (Part 1 of 2)

1 [:SENSe]:FUNCtion[:ON] "[:][XNONe:]FREQuency [1]"

1

32

Other
Meas

Freq
Ch 2

Gate &
ExtArm

MEASURE

Freq
Ch 1

FREQUENCY 2

RATIO 1 TO 2 (opt.)

RATIO 2 TO 1 (opt.)

VOLT PEAKS 1

PERIOD 1

FREQUENCY 1

a

b

c

d

Other
Meas

Freq
Ch 2

Freq
Ch 1

Commands Summary
Front Panel to SCPI Command Maps

2-9

2 a. [:SENSe]:FUNCtion[:ON] "[:][XNONe:]PERiod [1]"

b. [:SENSe]:FUNCtion[:ON] "[:][XNONe:]FREQuency:RATio [1,2]"

c. [:SENSe]:FUNCtion[:ON] "[:][XNONe:]FREQuency:RATio 2,1"

d. [:SENSe]:FUNCtion[:ON] "[:][XNONe:]VOLTage:MINimum [1]"

OR

[:SENSe]:FUNCtion[:ON] "[:][XNONe:]VOLTage:MAXimum [1]"

3 [:SENSe]:FUNCtion[:ON] "[:][XNONe:]FREQuency 2"

Since the primary purpose of these front-panel keys is to change the function, the
corresponding [:SENSe]:FUNCtion[:ON] command is listed in the menu map
above. The front-panel keys, however, invoke couplings which affect other settings,
whereas the [:SENSe]:FUNCtion[:ON] command does not.

Figure 2-3. MEASURE Keys to SCPI Command Map (Part 1 of 2)

Commands Summary
Front Panel to SCPI Command Maps

2-10

Frequency, Period, Ratio

Auto Arming:
a. GATE: AUTO

Digits Arming:
b. GATE: DIGITS
c. DIGITS: <digits>

Time Arming:
d. GATE: TIME
e. TIME: <time>

External Arming:
f. GATE: EXTERNL
g. START: POS

NEG
h1. STOP: AUTO
h2. STOP: NEG

POS
h3. STOP: TIME
i. TIME: <time>

Figure 2-4. Gate & ExtArm Key to SCPI Command Map (Part 1 of 2)

Other
Meas

Freq
Ch 2

MEASURE

Freq
Ch 1

1Gate &
ExtArm

Commands Summary
Front Panel to SCPI Command Maps

2-11

1

Frequency, Period, Ratio
Auto Arming:

a. [:SENSe]:FREQuency:ARM[:STARt]:SOURce IMMediate
[:SENSe]:FREQuency:ARM:STOP:SOURce IMMediate

Digits Arming:
b. [:SENSe]:FREQuency:ARM[:STARt]:SOURce IMMediate

[:SENSe]:FREQuency:ARM:STOP:SOURce DIGits

c. [:SENSe]:FREQuency:ARM:STOP:DIGits <numeric_value>

Time Arming:
d. [:SENSe]:FREQuency:ARM[:STARt]:SOURce IMMediate

[:SENSe]:FREQuency:ARM:STOP:SOURce TIMer

e. [:SENSe]:FREQuency:ARM:STOP:TIMer <numeric_value> [S]

External Arming:
f. [:SENSe]:FREQuency:ARM[:STARt]:SOURce EXTernal

g. [:SENSe]:FREQuency:ARM[:STARt]:SLOPe POSitive | NEGative

h1. [:SENSe]:FREQuency:ARM:STOP:SOURce IMMediate
h2. [:SENSe]:FREQuency:ARM:STOP:SOURce EXTernal

[:SENSe]:FREQuency:ARM:STOP:SLOPe POSitive | NEGative
h3. [:SENSe]:FREQuency:ARM:STOP:SOURce TIMer

i. [:SENSe]:FREQuency:ARM:STOP:TIMer <numeric_value> [S]

Figure 2-4. Gate & ExtArm Key to SCPI Command Map (Part 2 of 2)

Commands Summary
Front Panel to SCPI Command Maps

2-12

Figure 2-5. LIMITS and MATH Keys to SCPI Command Map
(Part 1 of 2)

LIMITS MATH

1

4
SCAL:

OFFS:

MATH:

SHOW:

ON FAIL:GO ON

3

ON SINGLE: 1

ON SINGLE: N

STATS:

N:

SHOW:LIM TEST:

2

e1

e2

a

b1

c

a

b

c

a

b

c

LOWR:

UPPR:a

b

StatsLimit
Modes

Uppr &
Lower

Scale &
Offset

Scale &
Offset

Stats

Uppr &
Lower

Limit
Modes

ON FAIL: STOPb2

USE: IN LIMITd2

USE: ALL MEASd1

Commands Summary
Front Panel to SCPI Command Maps

2-13

1 a. :CALCulate2:LIMit:UPPer[:DATA] <numeric_value> [HZ | S]
b. :CALCulate2:LIMit:LOWer[:DATA] <numeric_value> [HZ | S]

2 a. :CALCulate2:LIMit:STATe OFF | ON

b1. :INITiate:AUTO OFF
b2. :INITiate:AUTO ON

c. :CALCulate2:LIMit:DISPlay GRAPh | NUMBer

3 a. :DISPlay[:WINDow]:TEXT:FEED "CALC3" *
:CALCulate3:AVERage:TYPE MAXimum | MINimum | SDEViation | MEAN

*
OR

:DISPlay[:WINDow]:TEXT:FEED "CALC2" *

b. :CALCulate3:AVERage:COUNt <numeric_value>
c. :CALCulate3:AVERage[:STATe] OFF | ON
d1. :CALCulate3:LFILter:STATe OFF
d2. :CALCulate3:LFILter:STATe ON

e1. :TRIGger:COUNt:AUTO OFF
e2. :TRIGger:COUNt:AUTO ON

4 a. :TRACe[:DATA] SCALE, <numeric_value>
b. :TRACe[:DATA] OFFSET, <numeric_value> [HZ | S]
c. :CALCulate:MATH:STATe OFF | ON

*Use CALC3:AVER:TYPE and :DISP[:WIND]:TEXT:FEED "CALC3" to specify
SHOW: STD DEV, MEAN, MAX, or MIN. Use DISP[:WIND]:TEXT:FEED "CALC2" to
specify SHOW: MEAS.

Figure 2-5. LIMITS and MATH Keys to SCPI Command Map
(Part 2 of 2)

Commands Summary
Front Panel to SCPI Command Maps

2-14

Figure 2-6. Display Digits and Calibration Menu to SCPI Command
Maps

Stats

Scale &
Offset

MATH

POWER

DISPLAY

More Digits

Fewer Digits

2

HELP:

CODE:

CAL SECURE

1

a

c2

e

CAL COUNT:d

HELP:

CODE:

CAL:b

c1

e

CAL COUNT:d

CAL UNSECUREa

Commands Summary
Front Panel to SCPI Command Maps

2-15

1 :DISPlay[:WINDow]:TEXT:MASK <numeric_value>

2 a. :CALibration:SECurity:STATe?

b. :DIAGnostic:CALibration:INPut1:OFFSet:AUTO ONCE
:DIAGnostic:CALibration:INPut1:GAIN:AUTO ONCE
:DIAGnostic:CALibration:ROSCillator:AUTO ONCE

c1. :CALibration:SECurity:CODE <new_code>
OR

:CALibration:SECurity:STATe ON, <present_code>

c2. :CALibration:SECurity:STATe OFF, <present_code>

d. :CALibration:COUNt?

e. No command

The Calibration Menu is accessed by holding the Scale & Offset key and cycling
POWER key.

Figure 2-6. Display Digits and Calibration Menu to SCPI Command
Maps (Continued)

NOTE

Commands Summary

2-16

commands.

SCPI Conformance Information

Standard Version 1992.0 . The SCPI command set consists of the following:

• Common commands as defined in IEEE 488.2-1987— listed and summarized
in Table 2-1.

• SCPI Subsystem commands as confirmed (and listed) in the SCPI Standard—
the commands defined in Table 2-2 as “Std.”

• SCPI Subsystem commands designed for the instrument in conformance with
SCPI standards but not yet listed in the SCPI Standard— the commands defined
in Table 2-2 as “New.”

Reference” of this programming guide.

Information on the SCPI commands format, syntax, parameter, and response types
is provided in Chapter 3, “Programming Your Counter for Remote Operation,” of
this programming guide.

Agilent 53181A Command Summary

Agilent 53181A Command Summary
This section summarizes both the IEEE 488.2 Common and Agilent 53181A
Standard Commands for Programmable Instruments (SCPI) commands in
tabular format. IEEE 488.2 Common commands are listed first, followed by SCPI

The SCPI commands used in the Agilent 53181A are in conformance with the SCPI

Details of all Agilent 53181A commands can be found in Chapter 4, “Commands

Commands Summary

2-17

IEEE 488.2 Common Commands
The Common Commands are general purpose commands that are common to all
instruments (as defined in IEEE 488.2). Common Commands are easy to recognize
because they all begin with an “*” (for example, *RST, *IDN?, *OPC). These
commands are generally not related to measurement configuration. They are used
for functions like resetting the instrument, identification, or synchronization.

Table 2-1 lists the Common Commands in alphabetical order by mnemonic, name
and function. More information concerning the operation of IEEE 488.2 status
reporting commands and structure can be found in the “Status Reporting” section of
Chapter 3. Standard explanations of the IEEE 488.2 Common commands can be
found in the ANSI/IEEE Std. 488.2-1987, IEEE Standard Codes, Formats,
Protocols, and Common Commands document .

Agilent 53181A Command Summary

Commands Summary

2-18

Table 2-1. IEEE 488.2 Common Commands

Mnemonic Command Name Function

*CAL?

*CLS

*DDT <arbitrary block>

*DMC <string>, <arbitrary
block>

*EMC <NRf>

*EMC?

*ESE <NRf>

*ESE?

*ESR?

*GMC? <string>

*IDN?

*LMC?

*OPC

*OPC?

Calibration

Clear Status

Define Device Trigger Command

Define Macro Command

Enable Macro Command

Enable Macro Query

Standard Event Status Enable

Standard Event Status Enable
Query

Event Status Register Query

Get Macro Contents Query

Identification Query

Learn Macro Query

Operation Complete

Operation Complete Query

Causes the Counter to perform an internal interpolator self-
calibration and returns a response that indicates whether or
not the instrument completed the self-calibration without
error.

Clears Status data structures (Event Registers and Error
Queue).

Defines either INIT, FETC?, READ?, or nothing to be
executed when the Counter receives a GET or *TRG
command.

Assigns a sequence of zero or more commands/queries to a
macro label. No query form.

Enables and disables expansion of macros.
Non-zero value enables; zero value disables.

Queries whether macros are enabled.

Sets the Standard Event Status Enable Register.

Queries the Standard Event Status Enable
Register.

Queries the Standard Event Status Register.

Queries the current definition of a currently defined macro
label.

Queries the Counter identification.

Queries the currently defined macro labels.

Causes Counter to set the operation complete bit in the
Standard Event Status Register when all pending
operations (see Note) are finished.

Places an ASCII “1” in the Output Queue when all pending
operations (see Note) are completed.

Note: Pending operations include measurements in progress.

Agilent 53181A Command Summary

Commands Summary

2-19

Table 2-1. IEEE 488.2 Common Commands (Continued)

Mnemonic Command Name Function

*OPT?

*PMC

*RCL <NRf>

*RST

*SAV <NRf>

*SRE <NRf>

*SRE?

*STB?

*TRG

*TST?

*WAI

Option Identification Query

Purge Macro Command

Recall

Reset

Save

Service Request Enable

Service Request Enable Query

Status Byte Query

Trigger

Self-Test Query

Wait-to-Continue

Identifies the options installed in the Counter.

Deletes all macros previously defined using the
*DMC command.

Restores the state of the Counter from a copy stored
in local non-volatile memory (0 through 20 are valid
memory registers).

Resets the Counter to a known state.

Stores the current state of the Counter in local non-
volatile memory (1 through 20 are valid memory
registers).

Set the Service Request Enable register.

Queries the Service Request Enable register.

Queries the Status Byte and Master Summary Status
bit.

This trigger command is the device-specific analog
of the IEEE 488.1 defined GET. It initiates
measurement, unless *DDT was used to redefine
device trigger.

Executes an internal self-test and reports the results.

Makes Counter wait until all pending operations
(see Note) are completed before executing
commands following *WAI command.

Note: Pending operations include measurements in progress.

Agilent 53181A Command Summary

Commands Summary

2-20

SCPI Subsystem commands include all measurement functions and some general
purpose functions. SCPI Subsystem Commands use a hierarchy relationship
between keywords that is indicated by a “:” (colon). For example, in the
SYST:ERR? query, the “:” between SYST and ERR? indicates ERR? is subordinate
to SYST.

Table 2-2 lists the SCPI Subsystem Commands in alphabetical order by the
command keyword. The table shows the Subsystem commands hierarchical
relationship, related parameters (if any), and any associated information and
comments.

Not all commands have a query form. Unless a command is specified as “No
Query” or “Query Only” in the “Comments” column of Table 2-2, it has both a
command and a query form. Any command in the table that is shown with a “?”
at the end, is a “Query Only” command.

Std/New Column
The Std/New column in Table 2-2 gives the status of the command with respect to
the SCPI standard. The “Std” commands operate as defined in the SCPI standard
and as defined in this guide.

The category of “New” consists of commands that could be:

• SCPI approved but are not yet in the SCPI manual

•
• Not approved at all.

The “New” commands operate as defined in this guide.

Parameter Form Column
Refer to the section titled “Parameter Types” on page 3-11 in Chapter 3,
“Programming Your Counter for Remote Operation,” for descriptions of the
different parameter types (such as <Boolean>, <NRf>, <arbitrary block>, etc.).

Agilent 53181A Command Summary

Agilent 53181A SCPI Subsystem Commands

Agilent approved and submitted for SCPI approval.

Commands Summary

2-21

Keyword/Syntax Parameter Form Std/
New

Comments

:ABORt Std Event; no query. Aborts measurement in progress.

:CALCulate[1]

 :DATA?

 :FEED
 :IMMediate

 :AUTO
 :MATH
 [:EXPRession]
 :CATalog?

 [:DEFine]?

 :NAME | :SELect

 :STATe

"[:]SENSe[1]"

<Boolean>

SCALE_OFFSET

<Boolean>

Std

Std

Std
Std

Std
Std
Std
New

New

New

Std

Subsystem. Performs post-aquisition math processing
(scale and offset) and data transfer on the data
acquired by a SENSe function.
Query only. Returns scaled/offset measurement result.
Sets the data flow to be fed into the CALCulate block.
Event or query; causes the Counter to recalulate
existing data without re-acquiring.
Enables/disables automatic post-processing.
Subtree.
Subtree.
Returns the name of the defined equation,
SCALE_OFFSET.
Returns the expression (equation) used for
math (scale/offset) processing.
Sets the name of selected math expression (equation).
Enables/disables math (scale/offset) processing. Note
that this setting must be enabled for any of the other
:CALC[1] settings to be used.

:CALCulate2

 :FEED

 :IMMediate
 :AUTO
 :LIMit

 :CLEar
 :AUTO
 [:IMMediate]
 :DISPlay

 :FAIL?

"[:]CALCulate[1]"

<Boolean>

<Boolean>

GRAPh | NUMBer

Std

Std

Std
Std
Std

Std
Std
Std
New

Std

Subsystem. Performs post-aquisition limit testing and
data transfer.
Sets the data flow to be fed into the CALCulate2 block.
Event; no query. Causes the Counter to recalculate
existing data without re-acquiring.
Enables/disables automatic post-processing.
Subtree. Collects together the commands associated
with controlling and getting reports from a single LIMit
test.
Subtree.
Enables the automatic clearing of limit test results.
Event; no query. Clears the limit test results.
Sets whether the measurement display is numeric or
symbolic (on a graph).
Query only. Returns a 0 or 1 to indicate if the last tested
measurement passed or failed the limit test.
0 = pass; 1 = fail.

Keyword/Syntax Parameter Form Std/
New

Comments

Agilent 53181A Command Summary

Table 2-2. Agilent 53181A SCPI Command Summary

Table 2-2. Agilent 53181A SCPI Command Summary (Continued)

Commands Summary

2-22

:CALCulate2 (Cont.)
 :LIMit (Cont.)
 :FCOunt
 :LOWer?

 :UPPer?

 [:TOTal]?

 :LOWer
 [:DATA]

 :STATe

 :UPPer
 [:DATA]

 :PCOunt
 [:TOTal]?

<numeric_value> [HZ | S]

<Boolean>

<numeric_value> [HZ | S]

Std
New

New

New

Std
Std

Std

Std
Std

New
New

Subtree. An abbreviation for Fail COunt.
Query only. Returns the number of limit test failures at
the lower limit.
Query only. Returns the number of limit test failures at
the upper limit.
Query only. Returns the total number of
measurements that failed the limit test.
Subtree.
Sets lower limit used in limit testing.

Sets the limit test enable. Note that this setting must
be enabled for any of the other :CALC2 settings can
be used.
Subtree.
Sets upper limit used in limit testing.

Subtree. An abbreviation for Pass COunt.
Query only. Returns the total number of
measurements that passed the limit test.

:CALCulate3

 :AVERage

 :ALL?

 :CLEar

 :COUNt

 :CURRent?

 [:STATe]

 :TYPE

 :DATA?

 :FEED

<numeric_value>

<Boolean>

MAXimum | MINimum |
SDEViation | SCALar or
MEAN

"[:]CALCulate[1]"

Std

Std

New

Std

Std

New

Std

Std

Std

Std

Subsystem. Performs post-aquisition statistics
computation and data transfer.
Subtree. Collects together the commands associated
with the Statistics capabilities.
Returns all four Statistics reults (i.e., mean, standard
deviation, maximum, and minimum).
Event; no query. Clears the statistics results and
statistics count.
Selects number of measurements to combine for
statistics.
Query only. Returns the current number of data values
collected, thus far.
Enables/disables statistics post-processing. Note that
this setting must be enabled for any of the other
:CALC3 settings to be used.
Selects which statistic will be in :CALC3:DATA?,and
on the front-panel display.

Query only. Returns statistic result specified by
:CALC3:AVER:TYPE.
Sets the data flow to be fed into the CALCulate3 block.

Keyword/Syntax Parameter Form Std/
New

Comments

Agilent 53181A Command Summary

Table 2-2. Agilent 53181A SCPI Command Summary (Continued)

Commands Summary

2-23

:CALCulate3 (Cont.)
 :LFILter
 :LOWer
 [:DATA]

 :STATe
 :UPPer
 [:DATA]

 :PATH?

<numeric_value> [HZ | S]

<Boolean>

<numeric_value> [HZ | S]

New
New
New

New
New
New

Std

Subtree. Limit FILter for statistics.
Subtree.
Sets the statistics filter lower limit.

Sets the statistics filter enable.
Subtree.
Sets the statistics filter upper limit.

Query only. Returns LFIL, AVER.

:CALibration
 [:ALL]?

 :COUNt?

 :DATA

 :SECurity
 :CODE
 :STATe

<arbitrary block>

<NRf>
<Boolean>, <NRf>

Std
Std

New

Std

New
New
New

Subsystem.
Query only. Causes an internal interpolator
self-calibration.
Query only. Returns value indicating number of times
the Counter has been calibrated.
Transfers the calibration data (input gain, input offset,
and reference oscillator).

No query. Sets the calibration security code.
Enables or prevents calibration of the Counter. Query
returns security status. 0 = unsecure; calibration
allowed. 1 = secure; calibration disallowed.

:CONFigure Std See Measurement Instructions in this table.

:DIAGnostic
 :CALibration
 :INPut
 :GAIN
 :AUTO
 :OFFSet
 :AUTO
 :INTerpolator
 :AUTO

ONCE | OFF

ONCE | OFF

ONCE | OFF | ON

Std
New
New
New
New
New
New
New
New

Subsystem.
Subtree.
Subtree.
Subtree.
ONCE calibrates channel 1 input gain.
Subtree.
ONCE calibrates channel 1 input offset.
Subtree.
ONCE calibrates the interpolators.

Agilent 53181A Command Summary

Commands Summary

2-24

Keyword/Syntax Parameter Form Std/
New

Comments

:DIAGnostic
 :CALibration (Cont.)
 :ROSCillator

 :AUTO

 :STATus?

 :MEASure
 :RESolution?

ONCE | OFF

New

New

New

New
New

Subtree. ROSCillator is an abbreviation for Reference
OSCillator.
ONCE calibrates the timebase. This command is
usable only if the instrument contains the medium or
high stability oscillator option.
Query only. Returns status of last calibration.
0 = pass; 1 = fail.
Subtree.
Query only. Returns the resolution of the current
measurement. HIGH = the Counter is using the
continuous count technology to produce a
high-resolution result. NORM = the Counter is using
the same resolution as a traditional counter.

:DISPlay

 :ENABle
 :MENU
 [:STATe]

 [:WINDow]
 :TEXT

 :FEED

 :MASK

 :RADix

<Boolean>

OFF

"[:]CALCulate2" |
"[:]CALCulate3"

<numeric_value>

COMMa | DPOint

Std

Std
Std
Std

Std
Std

Std

New

New

Subsystem. Controls the selection and presentation of
textual information on the display.
Controls whether the whole display is visible.
Subtree.
Sets the Counter to switch from the menu display to
the result display.
Subtree.
Subtree. Allows for the display of textual information.
Sets which data flow is fed into the display. “CALC2”
specifies the raw measurement, scaled/offset
measurement, or Limit Graph display. “CALC3”
specifies the statistics result display.
Sets the number of least significant display digits
“masked” from the measurement result display.
Sets the character used to separate integral and
fractional portions of a number. (USA numerical
convention is Decimal POint.)

:FETCh Std See Measurement Instructions in this table.

:FORMat

 [:DATA] ASCii | REAL

Std

Std

Subsystem. Sets a data format for transferring
numeric information.
Sets the data format.

:HCOPy
 :CONTinuous <Boolean>

New
New Enables or disables printing results.

Agilent 53181A Command Summary

Table 2-2. Agilent 53181A SCPI Command Summary (Continued)

Commands Summary

2-25

Keyword/Syntax Parameter Form Std/
New

Comments

:INITiate
 :AUTO

 :CONTinuous

 [:IMMediate]

<Boolean>

<Boolean>

Std
New

Std

Std

Subsystem. Controls the initiation of measurements.
AUTO ON enables the Counter to automatically stop
measuring on a limit test failure. AUTO OFF disables
the automatic stop.
Sets the enable for continuously initiated
measurements.
Event; no query. Causes the instrument to initiate the
number of measurements specified by
:TRIGger:COUNt:AUTO.

:INPut

 :ATTenuation
 :COUPling
 :FILTer

 [:LPASs]
 [:STATe]
 :FREQuency?

 :IMPedance

1 | 10
AC | DC

<Boolean>

<numeric_value> [OHM]

Std

Std
Std
Std

Std
Std
Std

Std

Subsystem. Controls the characteristics
of the instrument's channel 1 input port.
Sets input attenuation.
Sets input coupling.
Subtree. Allows a low pass filter to be inserted in the
path of the measurement signal.
Subtree. Controls the Low PASs filter.
Sets the Low PASs filter enable.
Query only. Returns the cutoff frequency of the low
pass filter. Units are Hertz.
Sets input impedance (50 Ω or 1 MΩ).

:INPut2

 :COUPling?
 :IMPedance?

Std

Std
Std

Subsystem. Queries the characteristics of the
Counter's input channel 2.
Query only. Returns channel 2 input coupling.
Query only. Returns channel 2 input impedance.

:MEASure Std See Measurement Instructions in this table.

Agilent 53181A Command Summary

Table 2-2. Agilent 53181A SCPI Command Summary (Continued)

Commands Summary

2-26

Keyword/Syntax Parameter Form Std/
New

Comments

Measurement Instructions*

:CONFigure[:SCALar]:<function>

:CONFigure?

:MEASure[:SCALar]:<function>?

:READ[[:SCALar]:<function>]?

:FETCh[[:SCALar]:<function>]?

See <parameters> and
<source_list> in table on the next
page.

See <parameters> and
<source_list> in table on the next
page.

Std

Std

Std

Std

Std

Configures instrument to perform
specified measurement.

Returns function configured by the last :CONF or
:MEAS command.
Configures instrument, initiates measurement, and
queries for the result (i.e., provides complete
measurement sequence).

Initiates measurement, and queries for the result.
(Performs a :FETCh? on “fresh” data.)
Queries the result.

*The <function> and corresponding <parameters> and <source list> are defined by the following listing in this table.

<function> * <parameters> [,<source_list>] ** Std/
New

[:VOLTage]:FREQuency
[:VOLTage]:FREQuency:RATio

[:VOLTage]:MAXimum
[:VOLTage]:MINimum

[:VOLTage]:PERiod
[:VOLTage]:PTPeak

[<expected_value>[,<resolution>]]
[<expected_value>[,<resolution>]]

[<expected_value>[,<resolution>]]

[(@1) | (@2)]
[(@1), (@2) |
 (@2), (@1)]

[(@1)]
[(@1)]

[(@1) | (@2)]
[(@1)]

Std
New

Std
Std

Std
Std

 * The only functions which can be derived (using FETC? or READ?) from the stored data are
 period to/from frequency, maximum to/from minimum, maximum to/from peak-to-peak, and
 minimum to/from peak-to-peak. Ratio results require an acquisition of the ratio function.

** <source_list> has the same syntax as SCPI <channel _list> syntax. For example, a
 single-channel function (e.g., frequency, period, etc.) would use (@1) to specify channel 1,
 whereas a two-channel function (e.g., frequency ratio) would use (@1), (@2) to specify a
 measurement between channel 1 and channel 2.

Agilent 53181A Command Summary

Table 2-2. Agilent 53181A SCPI Command Summary (Continued)

Commands Summary

2-27

Keyword/Syntax Parameter Form Std/
New

Comments

:MEMory

 :DELete
 :MACRo

 :FREE
 :MACRo?

 :NSTates?

<string>

Std

Std
New

Std
Std

Std

Subsystem. Manages instrument memory.
Subtree.
Event; no query. Deletes the macro with
the name specified by the string
parameter.
Subtree.
Query only. Returns memory usage and
availability corresponding to macro data.
Query only. Returns the number of
available *SAV/*RCL states in the
instrument.

:READ Std See Measurement Instructions in this
table.

[:SENSe]
 :DATA?

 :EVENt

 :HYSTeresis
 :RELative

 :LEVel
 [:ABSolute]

 :AUTO
 :RELative

 :SLOPe

["[:]SENSe[1]"]

<numeric_value> [PCT]

<numeric_value> [V]

<Boolean>
<numeric_value> [PCT]

POSitive | NEGative

Std
Std

New

New
New

New
New

New
New

New

Subsystem setup commands.
Query only. Returns the current
measurement result data of the SENSe
subsystem (no scale or offset applied).
Subtree. Defines the channel 1 “trigger
event.”
Subtree.
Sets the size of the hysteresis window as
a percentage of allowable hysteresis.
Subtree.
Sets the level at the center of the
hysteresis window.
Sets the “auto-trigger” enable.
Sets the percentage of the peak-to-peak
range of the signal at which the instrument
will auto trigger. 0-100%.
Sets which edge of the input signal will be
considered an event.

Agilent 53181A Command Summary

Table 2-2. Agilent 53181A SCPI Command Summary (Continued)

Commands Summary

2-28

Keyword/Syntax Parameter Form Std/
New

Comments

[:SENSe] (Cont.)
 :EVENt2

 :LEVel
 [:ABSolute]?
 :SLOPe?

 :FREQuency

 :ARM

 [:STARt]
 :SLOPe

 :SOURce

 :STOP
 :DIGits

 :SLOPe

 :SOURce

 :TIMer

 :EXPected[1|2]

 :AUTO

POSitive | NEGative

IMMediate | EXTernal

<numeric_value>

POSitive | NEGative

IMMediate | EXTernal |
TIMer | DIGits
<numeric_value> [S]

<numeric_value> [HZ]

ON

New

New
New
New

Std

New

New
New

New

New
New

New

New

New

New

New

Subtree. Queries the characteristics of the “trigger
event” for channel 2 input.
Subtree.
Query only. Returns the channel 2 input trigger level.
Query only. Returns the edge of the channel 2 input that
will be considered an event.

Subtree. Controls the frequency, frequency ratio, and
period measuring capabilities of the instrument.
Subtree. Synchronizes the frequency start and stop arm
with events.
Subtree.
Sets the slope of the external start arm signal used in
external arming frequency, frequency ratio, and period
measurements. Only applies when
[:SENS]:FREQ:ARM[:STAR]:SOUR EXT is selected.
Sets the start arm for frequency, frequency ratio, and
period measurements.
Subtree.
Sets the resolution in terms of digits used in arming
frequency, frequency ratio, and period
measurements.Only applies when
[:SENS]:FREQ:ARM:STOP:SOUR DIG is selected.
Sets the slope of the external stop arm signal used in
external arming frequency, frequency ratio, and period
measurements. Only applies when
[:SENS]:FREQ:ARM:STOP:SOUR EXT is selected.
Sets the stop arm for frequency, frequency ratio, and
period measurements.
Sets the gate time used in arming frequency, frequency
ratio, and period measurements. Only applies when
[:SENS]:FREQ:ARM:STOP:SOUR TIM is selected.
Specifies the approximate frequency of a signal you
expect to measure at channel 1 or 2.
Configures Counter to perform a pre-measurement step
to automatically determine the approximate frequency of
the measurement signal(s).

Agilent 53181A Command Summary

Table 2-2. Agilent 53181A SCPI Command Summary (Continued)

Commands Summary

2-29

Keyword/Syntax Parameter Form Std/
New

Comments

[:SENSe] (Cont.)
 :FUNCtion

 [:ON]

 :ROSCillator
 :EXTernal
 :CHECk

 :FREQuency?

 :SOURce
 :AUTO

<sensor_function> (See below)

 "[:][XNONe:]FREQuency [1 | 2]"
 "[:][XNONe:]FREQuency:RATio [1,2 | 2,1]"
 "[:][XNONe:]PERiod [1 | 2]"
 "[:][XNONe:]VOLTage:MAXimum [1]"
 "[:][XNONe:]VOLTage:MINimum [1]"
 "[:]{XNONe:]VOLTage:PTPeak [1]

ON | OFF | ONCE

INTernal | EXTernal
<Boolean>

Std

Std

Std
Std
Std
New
New
New
Std
Std
New

Std

Std
Std

Subtree. Selects the <sensor function> to be
sensed by the instrument.
Sets the <sensor function> to be sensed by
the instrument.
Frequency on channel 1 or 2.
Frequency Ratio 1 to 2, or 2 to 1.
Period on channel 1 or 2.
Voltage Maximum on channel 1.
Voltage Minimum on channel 1.
Voltage Peak to Peak on channel 1.
Subtree. Controls the Reference OSCillator.
Subtree.
Set the enable for checking the validity and
presence of the external reference.
Query only. Returns the frequency value of the
external reference oscillator.
Sets the selection of a reference timebase.
Sets the enable for automatically selecting a
reference timebase.

Agilent 53181A Command Summary

Table 2-2. Agilent 53181A SCPI Command Summary (Continued)

Commands Summary

2-30

Keyword/Syntax Parameter Form Std/
New

Comments

:STATus

 :OPERation
 :CONDition?

 :ENABle
 [:EVENt]?

 :NTRansition

 :PTRansition

 :PRESet

 :QUEStionable
 :CONDition?

 :ENABle

 [:EVENt]?

 :NTRansition

 :PTRansition

<non-decimal numeric> | <NRf>

<non-decimal numeric> | <NRf>

<non-decimal numeric> | <NRf>

<non-decimal numeric> | <NRf>

<non-decimal numeric> | <NRf>

<non-decimal numeric> | <NRf>

Std

Std
Std

Std
Std

Std

Std

Std

Std
Std

Std

Std

Std

Std

Subsystem. Controls the SCPI-defined (Operation and
Questionable) status-reporting structures.
Subtree.
Query only.Queries the Operation Condition Status
Register.
Sets the Operation Event Status Enable Register.
Query only. Queries the Operation Event Status
Register.
Sets the negative transition filter for the Operation
status reporting structure.
Sets the positive transition filter for the Operation status
reporting structure.
Event; No query. Presets the enable registers and
transition filters associated with the Operation and
Questionable status reporting structures.
Subtree.
Query only. Queries the Questionable Data Condition
Status Register.
Sets the Questionable Data Event Status Enable
Register.
Query only. Queries the Questionable Data Event
Status Register.
Sets the positive transition filter for the Questionable
Data status reporting structure.
Sets the negative transition filter for the Questionable
Data status reporting structure.

Agilent 53181A Command Summary

Table 2-2. Agilent 53181A SCPI Command Summary (Continued)

Commands Summary

2-31

Keyword/Syntax Parameter Form Std/
New

Comments

:SYSTem

 :COMMunicate

 :SERial

 :TRANsmit

 :BAUD
 :PARity
 [:TYPE]
 :PACE
 :CONTrol
 :DTR

 :ERRor?

 :KEY
 :LOG?

 :VERSion?

<numeric_value>

EVEN | ODD | NONE
XON | NONE

IBFull | ON | LIMit

<numeric_value>

Std

Std

Std

Std

Std
Std
Std
Std
Std
Std

Std

Std
New

Std

Subsystem. Collects the functions that are not
related to instrument performance.
Subtree. Collects together configuration of
control/communication interfaces.
Subtree. Controls the physical configuration of the
RS-232C port.
Subtree. Affects parameters associated with
transmission.
Sets the baud rate.
Subtree. Controls the parity of the channel.
Sets the parity scheme.
Sets the software pacing scheme.
Subtree.
Sets the usage of the DTR line of the RS-232
port.
Query only. Queries the oldest error in the Error
Queue and removes the error from the queue (first
in, first out).
Simulates the pressing of a front-panel key.
Query only. Returns a comma-separated list of
integers representing all of the entries in the Key
Queue.
Query only. Returns the SCPI version number with
which the Counter complies.

:TRACe
 :CATalog?
 [:DATA]
 [:DATA]
 [:DATA]?
 [:DATA]?

OFFSET, <numeric_value> [HZ | S]
SCALE, <numeric_value>
OFFSET
SCALE

Std
Std
Std
Std
Std
Std

Subsystem.
Query only. Returns list of intrinsic constants.
Sets the offset value.
Sets the scale value.
Queries the offset value.
Queries the scale value.

:TRIGger
 :COUNt
 :AUTO <Boolean>

Std
Std
New

Subsystem.
Subtree.
Controls the number of measurements to be made
when :INIT[:IMM] is performed.

Agilent 53181A Command Summary

Table 2-2. Agilent 53181A SCPI Command Summary (Continued)

Commands Summary
*RST Response

2-32

*RST Response
The IEEE 488.2 *RST command returns the instrument to a specified state
optimized for remote operation. (Use *CLS to clear the status event registers and
the SCPI error queue.)

The states of commands affected by the *RST command are described in Table 2-3.
Table 2-4 lists commands that are unaffected by *RST.

Command Header Parameter State

:CALCulate[1]:FEED
:CALCulate[1]:IMMediate:AUTO
:CALCulate[1]:MATH[:EXPRession]:NAME
:CALCulate[1]:MATH:STATe

"[:]SENSe[1]"
<Boolean>
SCALE_OFFSET
<Boolean>

"SENSe[1]"
OFF
SCALE_OFFSET
OFF

:CALCulate2:FEED
:CALCulate2:IMMediate:AUTO
:CALCulate2:LIMit:CLEar:AUTO
:CALCulate2:LIMit:DISPlay
:CALCulate2:LIMit:LOWer[:DATA]
:CALCulate2:LIMit:STATe
:CALCulate2:LIMit:UPPer[:DATA]

"[:]CALCulate[1]"
<Boolean>
<Boolean>
GRAPh | NUMBer
<numeric_value>
<Boolean>
<numeric_value>

"CALCulate[1]"
OFF
ON
NUMBer
0.0000000000
OFF
0.0000000000

:CALCulate3:AVERage:COUNt
:CALCulate3:AVERage[:STATe]
:CALCulate3:AVERage:TYPE

:CALCulate3:FEED
:CALCulate3:LFILter:LOWer[:DATA]
:CALCulate3:LFILter:STATe
:CALCulate3:LFILter:UPPer[:DATA]

<numeric_value>
<Boolean>
MAXimum | MINimum |
SDEViation | MEAN
"[:]CALCulate[1]"
<numeric_value>
<Boolean>
<numeric_value>

100
OFF
MEAN

"CALCulate[1]"
0.0000000000
OFF
0.0000000000

*DDT <arbitrary block> #14INIT

:DIAGnostic:CALibration:INTerpolator:AUTO ON | OFF | ONCE ON

:DISPlay:ENABle
:DISPlay:MENU[:STATe]
:DISPlay[:WINDow]:TEXT:FEED

:DISPlay[:WINDow]:TEXT:MASK

<Boolean>
OFF
"[:]CALCulate2" |
"[:]CALCulate3"
<numeric_value>

ON
OFF
"CALCulate2"

0

*EMC <NRf> 0 (i.e., disabled)

:FORMat[:DATA] ASCii | REAL ASCii

Table 2-3. Agilent 53181A *RST State

Commands Summary
*RST Response

2-33

Command Header Parameter State

:HCOPy:CONTinuous <Boolean> OFF

:INITiate:AUTO
:INITiate:CONTinuous

<Boolean>
<Boolean>

OFF
OFF

:INPut:ATTenuation
:INPut:COUPling
:INPut:FILTer[:LPASs]:STATe
:INPut:IMPedance

1 | 10
AC | DC
<Boolean>
<numeric_value> [OHM]

1
AC
OFF
1E6 OHM

[:SENSe]:EVENt:HYSTeresis:RELative

[:SENSe]:EVENt:LEVel[:ABSolute]:AUTO
[:SENSe]:EVENt:LEVel:RELative
[:SENSe]:EVENt:LEVel:SLOPe

[:SENSe]:FREQuency:ARM[:STARt]:SLOPe
[:SENSe]:FREQuency:ARM[:STARt]:SOURce

[:SENSe]:FREQuency:ARM:STOP:DIGits
[:SENSe]:FREQuency:ARM:STOP:SLOPe
[:SENSe]:FREQuency:ARM:STOP:SOURce
[:SENSe]:FREQuency:ARM:STOP:TIMer
[:SENSe]:FREQuency:EXPected[1|2]:AUTO

[:SENSe]:FUNCtion[:ON]

[:SENSe]:ROSCillator:EXTernal:CHECk
[:SENSe]:ROSCillator:SOURce:AUTO

<numeric_value> [PCT]

<Boolean>
<numeric_value> [PCT]
POSitive | NEGative

POSitive | NEGative
IMMediate | EXTernal

<numeric_value>
POSitive | NEGative
IMMediate | EXTernal | TIMer | DIGits
<numeric _value> [S]
ON

<sensor_function>

ON | OFF | ONCE
<Boolean>

100 PCT

ON
50 PCT
POSitive

POSitive
IMMediate

4
NEGative
TIMer
100E− 3 S
ON

"FREQuency 1"

ON
ON

:SYSTem:KEY? __________ Key Queue cleared

:SYSTem:KEY:LOG? __________ Key Queue cleared

:TRACe[:DATA]
:TRACe[:DATA]

OFFSET, <numeric_value>
SCALE, <numeric_value>

0.0000000000
1.000000

:TRIGger:COUNt:AUTO <Boolean> OFF

Table 2-3. Agilent 53181A *RST State (Continued)

Commands Summary
*RST Response

2-34

Table 2-4. Unaffected by *RST

Item

*ESE

*OPC?

*SRE

*WAI

:CALibration:COUNt?

:CALibration:DATA

:CALibration:SECurity:CODE

:CALibration:SECurity:STATe

:DISPlay[:WINDow]:TEXT:RADix

:STATus:OPERation:ENABle

:STATus:OPERation:NTRansition

:STATus:OPERation:PTRansition

:STATus:QUEStionable:ENABle

:STATus:QUEStionable:NTRansition

:STATus:QUEStionable:PTRansition

:SYSTem:COMMunicate:SERial:CONTrol:DTR

:SYSTem:COMMunicate:SERial:TRANsmit:BAUD

:SYSTem:COMMunicate:SERial:TRANsmit:PACE

:SYSTem:COMMunicate:SERial:TRANsmit:PARity[:TYPE]

:SYSTem:ERRor? (Error Queue)

GPIB Address

3

Programming Your Counter for
Remote Operation

Programming Your Counter for Remote Operation
Introduction

3-2

Introduction
This chapter provides remote operation setup, and programming information that
helps you operate the Counter as a remote device.

Chapter Summary

• pg. 3-4
• Overview of Command Types and Formats pg. 3-7
• Elements of SCPI Commands pg. 3-8
• Using Multiple Commands pg. 3-13
• Overview of Response Message Formats pg. 3-15
• Status Reporting pg. 3-18
• Command Settings for Optimizing Throughput pg. 3-21
• How to Program the Counter for Status Reporting pg. 3-40
• How to Program the Counter to Display Results pg. 3-45
• How to Program the Cou nter to Synchronize

Measurements pg. 3-48
• How to Program the Counter for Math/Limit

Operation pg. 3-51
• How to Program the Counter to Define Macros pg. 3-53
• Writing SCPI Programs pg. 3-56
• Programming Examples pg. 3-59

Where to Find Some Specific Information

• pg. 3-4
• To Connect the Counter to a Computer pg. 3-6
• Remote/Local Operation pg. 3-6
• Common Command Format pg. 3-7
• SCPI Command and Query Format pg. 3-7
• Abbreviated Commands, Keyword Separator pg. 3-9
• Optional Keyword pg. 3-10
• Implied Channel (Optional Numeric Keyword Suffix) pg. 3-10
• Parameter Types pg. 3-11
• Parameter Separator, Query Parameters, Suffixes pg. 3-12
• Command Terminator pg. 3-13
• Program Messages pg. 3-14
• Response Messages, Response Message Syntax pg. 3-16

Configuring the GPIB

To Set the GPIB Mode and Address

Programming Your Counter for Remote Operation
Introduction

3-3

• Easiest Way to Make a Measurement pg. 3-61

• To Make a Frequency Measurement pg. 3-63

• To Perform Limit Testing pg. 3-64

• To Measure the Statistics of 50 Measurements pg. 3-65

• To Use Limits to Filter Data Before Measuring Stats pg. 3-67

• To Read and Store Calibration Data pg. 3-69

• To Optimize Throughput pg. 3-70

• To Use Macros pg. 3-73

Where to Find QuickBASIC Programming Examples

• To Make a Frequency Measurement pg. 3-76

• To Perform Limit Testing pg. 3-77

• To Measure the Statistics of 50 Measurements pg. 3-79

• To Use Limits to Filter Data Before Measuring Stats pg. 3-81

• To Read and Store Calibration Data pg. 3-85

• To Optimize Throughput pg. 3-86

• To Use Macros pg. 3-88

Where to Find Turbo C Programming Examples

• To Make a Frequency Measurement pg. 3-91

• To Use Limits to Filter Data Before Measuring Stats pg. 3-94

• To Optimize Throughput pg. 3-97

Where to Find BASIC Programming Examples

Programming Your Counter for Remote Operation

3-4

This section gives information on connecting and configuring the
.

• Addressed (talk/listen) — This mode is for bi-directional communication. The
Counter can receive commands and setups from the computer, and can send
data and measurement results.

from the front-panel.

• Talk-only— In this mode, the Counter can send data to a printer. It cannot
receive commands or setups from the computer.

and Address” for instructions on how to set the talk-only mode from the
front-panel.

When the Counter is shipped from the factory, it is configured as addressed
(talk/listen) with the address set to “3.”

1 Press and hold Recall (Utility) key, then cycle POWER.

2 Press Recall (Utility) key until GPIB: is displayed.

To best demonstrate how to set the address, let's assume that
GPIB: 3 is currently being displayed.

3a To set the address to “15”, perform the following:

a. Press s key.

GPIB: 03 is displayed. Note that “0” digit appears and is highlighted,
indicating that this digit will change when the
d or f arrow key is pressed.

Configuring the GPIB

Configuring the GPIB

GPIB to enable remote operation of the Counter

The Counter has two GPIB operating modes :

To select the talk/listen operating mode, set the Counter's GPIB
address from 0 to 30. Refer to the following section titled “To Set the GP-
IB Mode and Address” for instructions on how to set an GPIB address

To select the talk-only operating mode, set the Counter's GPIB mode
to “TALK”. Refer to the following section titled “To Set the GPIB Mode

To Set the GPIB Mode and Address

Programming Your Counter for Remote Operation

3-5

b. Press the appropriate arrow keys until GPIB: 15 is displayed.

c. Go on to step 4.

3b

a. Press s key.

GPIB: 03 is displayed. Note that “0” digit appears and is highlighted,
indicating that this digit will change when the
d or f arrow key is pressed.

b. Press d key until GPIB: TALK is displayed.

c. Go on to step 4.

4 Press Enter key.

BE SURE to press the Enter key to complete the entry.

The address/mode is now stored in non-volatile memory, and does not change when
power is cycled or after a remote interface reset.

NOTE

Configuring the GPIB

To set the GPIB mode to “TALK,” perform the following:

Programming Your Counter for Remote Operation

3-6

To Connect the Counter to a Computer

Figure 3-1.

Remote/Local Operation
While in remote, the front-panel Remote indicator is on, and the Counter settings
cannot be affected by the front-panel controls. The Save & Print key may be used to
manually return to local control (only if local-lockout is off).

If an error occurs while the Counter is in remote, the front -panel Remote indicator
flashes until the controller has read or cleared the error queue, or until the front
panel returns to local control.

While in local, the front-panel Remote indicator is off.

Configuring the GPIB

Connect the Counter to a computer by simply installing an GPIB cable (such as an
Agilent 10833A cable) between the two units as shown in

Figure 3-1. GPIB Interconnection

1

Ext
Arm

Ref
In

I
N
P
U
T
S

!

AC LINE:

10 MHz Out

60
 V

A
10

0
-

12
0

V
A

C
20

0
-

24
0

V
A

C
50

/6
0/

40
0

H
z

50
/6

0
H

z

OPTIONS

2

3

Agilent 53181A
Counter
(Rear Panel)

Agilent 10833A/B/C/D GPIB Cable

Computer (Rear Panel)

Programming Your Counter for Remote Operation
Overview of Command Types and Formats

3-7

Overview of Command Types and Formats

Commands and Standard Commands for Programmable Instruments (SCPI). The
IEEE 488.2 Common Commands control and manage communications between the

instrument functions. The format of each type of command is described in the
following paragraphs. (Refer to Chapter 2, “Commands Summary,” for SCPI
conformance information.)

Common Command Format
The IEEE 488.2 Standard defines the Common commands as commands that
perform functions like reset, self-test, status byte query, and identification. Common
commands always begin with the asterisk (*) character, and may include
parameters. The command keyword is separated from the first parameter by a space
character. Some examples of Common commands are as follows:

*RST *IDN? *RCL 1

SCPI Command and Query Format
SCPI commands perform functions like instrument setup. A subsystem command
has a hierarchical structure that usually consists of a top level (or root) keyword, one
or more lower-level keywords, and parameters. The following example shows a
command and its associated query:

:INPut:COUPling AC
:INPut:COUPling?

INPut is root-level keyword with COUPling the second level keyword, and AC is
the command parameter.

There are two types of Agilent 53181A programming commands: IEEE 488.2 Common

Agilent 53181A and the controller or personal computer. The SCPI commands control

Programming Your Counter for Remote Operation
Elements of SCPI Commands

3-8

Elements of SCPI Commands
A program command or query is composed of functional elements that include a
header (or keywords with colon separators), program data, and terminators . These
elements are sent to the Counter over the

Command and Subsystem Command are:

OUTPUT 712;"*CLS"
OUTPUT 712;":INP:COUP AC;IMP 1.0 MOHM"

Subsystem Command Syntax

Figure 3-2 shows the simplified syntax of a Subsystem Command. You must use a
space (SP) between the last command mnemonic and the first parameter in a
Subsystem Command. Note that if you send more than one parameter with a single
command, you must separate adjacent parameters with a comma .

NOTE: sp = space. ASCII character decimal 32

Figure 3-2. Simplified Program Command Syntax Diagram

Common Command Syntax
Figure 3-3 shows the simplified syntax of a Common Command . You must use a
space (SP) between the command mnemonic and the parameter in a Common
Command.

GPIB as a sequence of ASCII data messages. Examples of a typical Common

?

sp:

,:

parametermnemonic

suffix

Programming Your Counter for Remote Operation
Elements of SCPI Commands

3-9

NOTE: sp = space. ASCII character decimal 32

Figure 3-3. Simplified Common Command Syntax Diagram

Abbreviated Commands
The command syntax shows most keywords as a mixture of upper and lower case
letters. Upper case letters indicate the abbreviated spelling for the command. For

accepts either command form and is not case sensitive.

For example, if the command syntax shows CALCulate, then CALC and
CALCULATE are both acceptable forms. Other forms of CALCulate, such as
CALCU or CALCULA will generate an error. You may use upper and/or lower case
letters. Therefore, CALCULATE, calculate, and CaLcUlAtE are all acceptable.

Keyword Separator
A colon (:) always separates one keyword from the next lower-level keyword as
shown below:

:INPut:COUPling?

better program readability, you may send the entire keyword. The Agilent 53181A

?

sp* parametermnemonic

Programming Your Counter for Remote Operation
Elements of SCPI Commands

3-10

Optional Keyword
Optional keywords are those which appear in square brackets ([]) in the command
syntax. (Note that the brackets are not part of the command and are not sent to the
Counter.)

Suppose you send a second level keyword without the preceding optional keyword.
In this case, the Counter assumes you intend to use the optional keyword and
responds as if you had sent it.

Examine the portion of the [:SENSe] subsystem shown below:

[:SENSe]
 :FREQuency
 :ARM
 :STOP
 :SOURce EXTernal

The root-level keyword [:SENSe] is an optional keyword. To set the Counter's
frequency stop arm to external, you can use either of the following:

:SENS:FREQ:ARM:STOP:SOUR EXT
 or
:FREQ:ARM:STOP:SOUR EXT

Programming Your Counter for Remote Operation
Elements of SCPI Commands

3-11

Parameter Types
Table 3-1 contains explanations and examples of parameter types. Parameter types
may be numeric value, Boolean , literal, NRf, string , non-decimal numeric , or
arbitrary block.
Table 3-1. Command and Query Parameter Types

TYPE EXPLANATIONS AND EXAMPLES

<numeric value>

<Boolean>

<literal>

<NRf>

<string>

<non-decimal
numeric>
<arbitrary block>

Accepts all commonly used decimal representation of numbers including optional signs, decimal
points, and scientific notation:
123, 123e2, -123, − 1.23e2, .123, 1.23e− 2, 1.23000E− 01.
Special cases include MINimum and MAXimum as follows:
MINimum selects minimum value available.
MAXimum selects maximum value available.
Queries using MINimum or MAXimum return the associated numeric value.
Represents a single binary condition that is either true or false:
1 or ON, 0 or OFF (Query response returns only 1 or 0.)
An <NRf> is rounded to an integer. A non-zero value is interpreted as 1.
Selects from a finite number of choices. These parameters use mnemonics to represent each
valid setting. An example is the INPut:COUPling AC | DC command parameters (AC | DC).
Flexible numeric representation. Only positive integers are used for NRf parameters in the
Counter.
A string parameter is delimited by either single quotes or double quotes. Within the quotes, any
characters in the ASCII 7-bit code may be specified.

OUTPUT 703;"FUNC ‘FREQ’"

Format for specifying hexadecimal (#H1F), octal (#Q1077), and binary (#B10101011) numbers
using ASCII characters. May be used in :STATus subsystem commands.
The syntax is a pound sign (#) followed by a non-zero digit representing the number of digits in the
subsequent decimal integer. The decimal integer specifies the number of
8-bit data bytes being sent. This is followed by the actual data. The terminator is a line feed
asserted with EOI. For example, for transmitting 8 bytes of data, the format could be:

The “2” indicates the number of digits that follow and the two digits “08” indicate the number of
data bytes to be transmitted.

A zero-length block has the format: #0<new line>^EOI

<new line> is defined as a single ASCII-encoded byte corresponding to 10 decimal.

The following BASIC program statement sends a command containing a <string> parameter:

<new line><8 bytes of data>2# 08 ^EOI

TerminatorActual data

Number of digits
that follow

Number of bytes
to be transmitted

Programming Your Counter for Remote Operation
Elements of SCPI Commands

3-12

Parameter Separator
If you send more than one parameter with a single command, you must separate
adjacent parameters with a comma .

Query Parameters
All selectable <numeric value> parameters can be queried to return the minimum or
maximum values they are capable of being set to by sending a MINimum or
MAXimum parameter after the “?.” For example, consider the INPut:IMPedance?
query.

If you send the query without specifying a parameter (INP:IMP?), the present
impedance value is returned. If you send the MIN parameter (using INP:IMP?
MIN), the command returns the minimum level currently available. If you send the
MAX parameter, the command returns the maximum level currently available. Be
sure to place a space between the question mark and the parameter.

Suffixes
A suffix is the combination of suffix elements and multipliers that can be used to
interpret the <numeric value> sent. If a suffix is not specified, the Counter assumes
that <numeric value> is unscaled (that is, Volts, seconds, etc.)

For example, the following two commands are equivalent:

OUTPUT 703;"INP:IMP 1 MOHM"
OUTPUT 703;"INP:IMP 1E+6"

Suffix Elements

Suffix elements , such as HZ (Hertz), S (seconds), V (volts),
OHM (Ohms), PCT (percent), and DEG (degrees) are allowed within this format.

Programming Your Counter for Remote Operation
Elements of SCPI Commands

3-13

Suffix Multipliers

Table 3-2 lists the suffix multipliers that can be used with suf fix elements (except
PCT and DEG).

Table 3-2. Suffix Multipliers

DEFINITION MNEMONIC NAME

1E18 EX EXA

1E15 PE PETA

1E12 T TERA

1E9 G GIGA

1E6 MA (or M for OHM and HZ)* MEGA

1E3 K KILO

1E-3 M (except for OHM and HZ)* MILLI

1E-6 U MICRO

1E-9 N NANO

1E-12 P PICO

1E-15 F FEMTO

1E-18 A ATTO

*The suffix units, MHZ and MOHM, are special cases that should not be confused with
<suffix multiplier>HZ and <suffix multiplier>OHM.

Command Terminator
A command may be terminated with a <new line> (ASCII character decimal 10), an
EOI (End-of-Identify) asserted concurrent with last byte, or an EOI asserted
concurrent with a <new line> as the last byte.

Programming Your Counter for Remote Operation
Using Multiple Commands

3-14

Using Multiple Commands
Program Messages
Program Messages are a combination of one or more properly formatted SCPI
Commands. Program messages always go from a computer to the Counter. They are

Program Message Syntax
Figure 3-4 shows the simplified syntax of a program message. You can see
Common Commands and Subsystem Commands in the same program message. If
you send more than one command in one message, you must separate adjacent
commands with a semicolon.

NOTE:
<new line> = ASCII character decimal 10
^END = EOI asserted concurrent with last byte

Figure 3-4. Simplified Program Message Syntax Diagram

When using IEEE 488.2 Common commands with SCPI Subsystem commands on
the same line, use a semicolon between adjacent commands. For example:

*RST;:INP:COUP AC

When multiple subsystem commands are sent in one program message, the first
command is always referenced to the root node. Subsequent commands, separated
by “;”, are referenced to the same level as the preceding command if no “:” is
present immediately after the command separator (the semicolon).

For example, sending :INP:COUP AC;IMP 50 is equivalent to

sending:

:INP:COUP AC
:INP:IMP 50

sent to the Counter over the Counter's GPIB as a sequence of ASCII data messages.

;

Subsystem Command

<new line>
Common Command

^END

^END

<new line>

Programming Your Counter for Remote Operation
Using Multiple Commands

3-15

 or
:INP:COUP AC;:INP:IMP 50

The “:” must be present to distinguish another root level command. For example:

:INP:COUP AC;:INIT:CONT OFF

is equivalent to sending:

:INP:COUP AC
:INIT:CONT OFF

If the “:”(which is following the “;” and is in front of INIT) is omitted, the Counter
assumes that the second command is “:INP:INIT:CONT OFF” and generates a
syntax error.

Programming Your Counter for Remote Operation
Overview of Response Message Formats

3-16

Overview of Response Message Formats
Response Messages
Response messages are data sent from the Counter to a computer in response to a
query. (A query is a command followed by a question mark. Queries are used to find
out how the Counter is currently configured and to transfer data from the Counter to
the computer.)

After receiving a query, the Counter interrogates the requested configuration and

queue until it is read or another command is issued. When read, the message is

type of enter statement that includes the device address and an appropriate variable.

illustrates how to query the Counter and display the message:

10 OUTPUT 703;":INP:COUP?"
20 ENTER 703; A$
30 PRINT A$
40 END

Response Message Syntax
Figure 3-5 shows the simplified syntax of a Response Message. Response messages
may contain both commas and semicolon separators. When a single query command
returns multiple values, a comma is used to separate each item. When multiple
queries are sent in the same program message, the groups of data corresponding to
each query are separated by a semicolon. Note that a <new line> ^END is always
sent as a response message terminator.

places the response in its GPIB output queue. The output message remains in the

transmitted across the GPIB to the computer. You read the message by using some

Use a print statement to display the message. The following BASIC example

Programming Your Counter for Remote Operation
Overview of Response Message Formats

3-17

NOTE:
<new line> = ASCII character decimal 10
^END = EOI asserted concurrent with last byte
; = multiple response separator (ASCII character decimal 59)
, = data separator within a response (ASCII character decimal 44)

Figure 3-5. Simplified Response Message Syntax Diagram

,

response data <new line> ^END

;

Programming Your Counter for Remote Operation
Overview of Response Message Formats

3-18

Response Message Data Types
Table 3-3 contains explanations of response data types.

Table 3-3. Response Message Data Types

Type Description

<NR1> This numeric representation has an implicit radix point.

The maximum number of characters in <NR1> response data is 17 (maximum
16 digits, 1 sign).

<NR2> This numeric representation has an explicit radix point.

The maximum number of characters in <NR2> response data is 17 (maximum
15 mantissa digits, 1 sign, 1 decimal point).

<NR3> This numeric representation has an explicit radix point and an exponent.

The maximum number of characters in <NR3> response data is 22 (maximum
15 mantissa digits, 2 signs, 1 decimal point, 1 'E' character, 3 exponent digits).

Not a Number Not a Number is represented by the value 9.91E37. (Not a Number is defined in
IEEE 754). The Counter responds with this numeric value when queried for a
floating point number it cannot provide. This value will be formatted as an <NR3>.

−

+
<digit>

<digit> . <digit>

−

+

<digit> . <digit>

E <digit>

−

+

−

+

Programming Your Counter for Remote Operation
Overview of Response Message Formats

3-19

Table 3-3. Response Message Data Types (Continued)

Type Description

<Boolean> A single ASCII-encoded byte, 0 or 1, is returned for the query of settings that
use <Boolean> parameters.

<literal> ASCII-encoded bytes corresponding to the short form of the literal used as the
command parameter.

For example, if the :CALC3:AVER:TYPE MAXimum command is sent to the
Counter, the :CALC3:AVER:TYPE? response would be MAX.

<string> A string response consists of ASCII characters enclosed by double quotes.

For example, string data is used for the “<error description>” portion of
:SYST:ERR? response and for [:SENS]:FUNC? response.

<definite length
 block>

The syntax is a pound sign (#) followed by a non-zero digit representing the
number of digits in the subsequent decimal integer. The decimal integer
specifies the number of 8-bit data bytes being sent. This is followed by the
actual data. The terminator is a line feed asserted with EOI. For example, for
transmitting 8 bytes of data, the format might be:

The “2” indicates the number of digits that follow and the two digits “08”
indicate the number of data bytes to be transmitted.

A zero-length block has the format: #0<new line>^EOI

<new line> is defined as a single ASCII-encoded byte corresponding to
10 decimal.

<new line><8 bytes of data>2# 08 ^EOI

TerminatorActual data

Number of digits
that follow

Number of bytes
to be transmitted

Programming Your Counter for Remote Operation
Status Reporting

3-20

Status Reporting

Figure 3-6 shows all the status system register groups and queues in the Counter.
This is a high level drawing that does not show all the registers that are contained
in each group . It is intended as a guide to the bits used in each of these register
groups to monitor the Counter's status. Note that besides the Operation Status and
the Questionable Data/Signal Register groups, a summary of the Standard Status
Structure Registers (defined by IEEE 488.2-1987) is shown.

Refer to the section in this chapter titled “How to Program the Counter for Status
Reporting” and the flowchart in Figure 3-10 for detailed information on
programming the status reporting system.

The Agilent 53181A status registers conform to the SCPI and IEEE 488.2 standards.

Programming Your Counter for Remote Operation
Status Reporting

3-21

Diagram
Figure 3-6. Agilent 53181A SCPI Status Reporting Summary Functional

Programming Your Counter for Remote Operation
Status Reporting

3-22

Status Byte Register and Service Request Enable Register

Figure 3-7. Status Byte and Service Request Enable

Status Byte Register
The Status Byte Register is the summary-level register in the status reporting
structure. It contains summary bits that monitor activity in the other status registers
and queues as shown in Figure 3-7. The Status Byte Register is a live register— its
summary bits are set TRUE or FALSE (one or zero) by the presence or absence of
the condition which is being summarized.

The Status Byte Register can be read with either a serial poll or the *STB? query.

The Status Byte Register is altered only when the state of the overlying status data
structures is altered.

The entire Status Byte Register can be cleared by sending the *CLS command, by
itself in a program message, to the Counter.

Table 3-3 lists the Status Byte Register bits and briefly describes each bit.

0
1
2

QSB
MAV
ESB

RQS /MSS
OSB

SRQ Interrupt
to Computer

Status Byte
Register

&
&

&
&

&
&

&

0
1
2
3
4
5

7

Service Request
Enable Register

Operation Status
Register Group Service

Request
Generation

Questionable
Data/Signal

Status Register
Group

Logical OR

(Logical AND)

Standard Event
Status Register

Group

Status of
Output Queue

Programming Your Counter for Remote Operation
Status Reporting

3-23

Table 3-3. Status Byte Register

BIT WEIGHT SYMBOL DESCRIPTION

0 Not used

1 Not used

2 Not used

3 8 QSB
Questionable Data/Signal Status Register
Summary Bit

4 16 MAV Message Available Summary Bit

5 32 ESB Standard Event Status Register Summary Bit

6 64 RQS/MSS Request Service/Master Status Summary Bit

7 128 OSB Operation Status Register Summary Bit

A detailed description of each bit in the Status Byte Register follows:

• Bits 0 - 2 are not used.

• Bit 3 (QSB) summarizes the Questionable Data/Signal Status Event
Register.

This bit indicates whether or not one or more of the enabled Questionable
Data/Signal events have occurred since the last reading or clearing of the
Questionable Data/Signal Status Event Register.

This bit is set TRUE (one) when an enabled event in the Questionable
Data/Signal Status Event Register is set TRUE. Conversely, this bit is set
FALSE (zero) when no enabled events are set TRUE.

• Bit 4 (MAV) summarizes the Output Queue.

This bit indicates whether or not the Output Queue is empty.

This bit is set TRUE (one) when the Counter is ready to accept a request by
the external computer to output data bytes; that is, the Output Queue is not
empty. This bit is set FALSE (zero) when the Output Queue is empty.

Programming Your Counter for Remote Operation
Status Reporting

3-24

• Bit 5 (ESB) summarizes the Standard Event Status Register.

This bit indicates whether or not one of the enabled Standard Event Status
Register events have occurred since the last reading or clearing of the
Standard Event Status Register.

This bit is set TRUE (one) when an enabled event in the Standard Event
Status Register is set TRUE. Conversely, this bit is set FALSE (zero) when
no enabled events are set TRUE.

• Bit 6 (RQS/MSS) summarizes IEEE 488.1 RQS and Master Summary
Status.

When a serial poll is used to read the Status Byte Register, the RQS bit
indicates if the device was sending SRQ TRUE. The RQS bit is set FALSE
by a serial poll.

When *STB? is used to read the Status Byte Register, the MSS bit indicates
the Master Summary Status. The MSS bit indicates whether or not the
Counter has at least one reason for requesting service.

• Bit 7 (OSB) summarizes the Operation Status Event Register.

This bit indicates whether or not one or more of the enabled Operation
events have occurred since the last reading or clearing of the Operation
Status Event Register.

This bit is set TRUE (one) when an enabled event in the Operation Status
Event Register is set TRUE. Conversely, this bit is set FALSE (zero) when
no enabled events are set TRUE.

Service Request Enable Register

The Service Request Enable Register selects which summary bits in the Status Byte
Register may cause service requests as shown in
Figure 3-7.

Use *SRE to write to this register and *SRE? to read this register.

Use *SRE 0 to clear the register. A cleared register does not allow status
information to generate the service requests. (Power-on also clears this register.)

Programming Your Counter for Remote Operation
Status Reporting

3-25

Standard Event Status Register Group

Figure 3-8. Standard Event Status Reporting

Standard Event Status Register

The Standard Event Status Register contains bits that monitor specific IEEE 488.2-
defined events as shown in Figure 3-8.

Use *ESR? to read this register.

Use *ESR? or *CLS to clear this register.

Table 3-4 lists the Standard Event Status Register bits and briefly describes each bit.

0
1
2
3
4
5
6
7

&
&

&
&

&
&

&

0
1
2
3
4
5

7

Standard Event
Status Register

To ESB bit (bit 5) of the
Status Byte Register

Logical OR

6

Operation Complete
Not Used
Query Error
Device-Dependent Error
Execution Error
Command Error

Power On
Not Used&

Standard Event
Enable Register

Programming Your Counter for Remote Operation
Status Reporting

3-26

Table 3-4. Standard Event Status Register

BIT WEIGHT SYMBOL DESCRIPTION

0 1 OPC Operation Complete

1 (RQC) Not used because this instrument
cannot request permission to become active
IEEE 488.1 controller-in-charge.

2 4 QYE Query Error

3 8 DDE Device-Specific Error

4 16 EXE Execution Error

5 32 CME Command Error

6 (URQ) Not used because this instrument does not
define any local controls as “User Request”
controls.

7 128 PON Power On

A detailed description of each bit in the Standard Event Status Register follows:

• Bit 0 (Operation Complete) is an event bit which is generated in response
to the *OPC command. This bit indicates that the Counter has completed all
pending operations.

Specifically, this event bit indicates that the pending operation condition has
transitioned from TRUE to FALSE.

If

the :TRIGger:COUNt:AUTO is OFF, or

statistics are disabled, or

the function is set to Voltage Peaks,

then the pending operation condition is set TRUE when either: 1) a single
measurement is initiated, or 2) a continuous measurement cycle is initiated.
The pending operation condition is set FALSE when the measurement cycle
terminates.

Programming Your Counter for Remote Operation
Status Reporting

3-27

If

the TRIGger:COUNt:AUTO is ON, and

statistics are enabled, and

the function is set to Voltage Peaks,

then the pending operation condition is set TRUE when a block of
measurements is initiated. The pending operation condition is set FALSE
when the block of measurements completes; that is, when the last
measurement in the block completes.

The OPC bit is not in any way affected by the *OPC? query.

• Bit 1 is not used.

• Bit 2 (Query Error) is an event bit which indicates that either 1) an attempt
was made to read the Output Queue when it was empty or 2) data in the
Output Queue has been lost.

Errors -400 through -499 are query errors.

• Bit 3 (Device-Specific Error) is an event bit which indicates an operation
did not properly complete due to some condition of the Counter.

Errors -300 through -399 and all those with positive error numbers (+2000
through ...) are device-specific errors.

• Bit 4 (Execution Error) is an event bit which indicates that a command
could not be executed 1) because the parameter was out of range or
inconsistent with the Counter's capabilities, or 2) because of some condition
of the Counter.

Errors -200 through -299 are execution errors.

• Bit 5 (Command Error) is an event bit which indicates one of the following
has occurred: 1) an IEEE 488.2 syntax error, 2) a semantic error indicating
an unrecognized command, or 3) a Group Execute Trigger was entered into
the input buffer inside of a program message.

• Bit 6 is not used.

• Bit 7 (Power On) is an event bit which indicates that an off-to-on transition
has occurred in the Counter's power supply.

Standard Event Status Enable Register

NOTE

Programming Your Counter for Remote Operation
Status Reporting

3-28

The Standard Event Status Enable Register selects which events in the Standard
Event Status Register are reflected in the ESB summary bit (bit 5) of the Status Byte
Register as shown in Figure 3-8.

Use *ESE to write to this register and *ESE? to read this register.

Use *ESE 0 to clear the register. (Power-on also clears this register.)

Operation Status Register Group and Questionable Data/Signal
Status Register Group
The Operation Status Register Group and the Questionable Data/Signal Status
Register Group each have a complete set of registers that consists of the following:

• a condition register

• a positive transition filter register

• a negative transition filter register

• an event register

• an event enable register

Figure 3-9 shows the model that these register groups follow.

Programming Your Counter for Remote Operation
Status Reporting

3-29

Figure 3-9. Operation and Questionable Status Reporting Model

0
1
2

n-1
n

Condition
Register

&
&

&

&
&

(Logical AND)

Logical OR

*

Transition
Filter

*
*

*
*

0
1
2

n-1
n

Event
Register

0
1
2

n-1
n

Event
Enable

Register

Summary Bit
(OSB or QSB)

Status Byte Register

Device Status
Continuously
Monitored

* = positive transition, or
negative transition, or
either transition.
See Table 3-5.

Programming Your Counter for Remote Operation
Status Reporting

3-30

Condition Register

A condition register continuously monitors the hardware and firmware status of the
Counter. There is no latching or buffering for this register; it is updated in real
time. Reading a condition register does not change its contents.

To read the condition registers use:

:STATus:OPERation:CONDition?

:STATus:QUEStionable:CONDition?

Transition Filter

A transition filter specifies the transition criteria for setting event bits TRUE.

When the transition filter specifies a positive transition, the event becomes TRUE
when its associated condition makes a FALSE to TRUE transition only.

When the transition filter specifies a negative transition, the event becomes TRUE
when its associated condition makes a TRUE to FALSE transition only.

When the transition filter specifies either a positive or a negative transition, the
event becomes TRUE when its associated condition makes either a FALSE to TRUE
or a TRUE to FALSE transition.

A transistion filter is defined by a positive and negative transition filter register.
Table 3-5 describes how the transition filter registers define the transition criteria
for setting an event bit TRUE.

Table 3-5. Transition Filter Definition

Positive
Transition
Filter Bit

Negative
Transition
Filter Bit

Transition Which Causes the
Event-Bit to be set TRUE

TRUE FALSE positive transition

FALSE TRUE negative transition

TRUE TRUE either a positive or negative transition

FALSE FALSE neither transition (event reporting is disabled)

Transition filters are unaffected by *CLS or queries. Transition filters are set to
default values by :STATus:PRESet and power-on.

To write to the transitions filter registers use:

Programming Your Counter for Remote Operation
Status Reporting

3-31

:STATus:OPERation:PTRansition
:STATus:OPERation:NTRansition
:STATus:QUEStionable:PTRansition
:STATus:QUEStionable:NTRansition

To read the transition filter registers use:

:STATus:OPERation:PTRansition?
:STATus:OPERation:NTRansition?
:STATus:QUEStionable:PTRansition?
:STATus:QUEStionable:NTRansition?

Event Register

An event register captures changes in conditions.

An event register bit (event bit) shall be set TRUE when an associated event occurs.
These bits, once set, are “sticky.” That is, they cannot be cleared even if they do not
reflect the current status of a related condition, until they are read.

To read the event registers use:

:STATus:OPERation[:EVENt]?
:STATus:QUEStionable[:EVENt]?

Use event register queries or *CLS to clear event registers.

Event Enable Register

An event enable register selects which event bits in the corresponding event register
can generate a summary bit.

To write the event enable registers use:

:STATus:OPERation:ENABle
:STATus:QUEStionable:ENABle

To read the event enable registers use:

:STATus:OPERation:ENABle?
:STATus:QUEStionable:ENABle?

The event enable registers are cleared by :STATus:PRESet and
power-on .

Operation Status Register Group

The Operation Status Register Group monitors conditions which are part of the
Counter's normal operation.

Programming Your Counter for Remote Operation
Status Reporting

3-32

Table 3-6 lists the Operation Status Register bits and briefly describes each bit.

Table 3-6. Operation Status Register

BIT WEIGHT DESCRIPTION

0 1 Calibrating

1 Not used

2 Not used

3 Not used

4 16 Measuring

5 Not used

6 Not used

7 Not used

8 256 Computing Statistics

9 512 Using Internal Reference

10 1024 In Limit Event

11-14 Not used

15 Not used since some controllers may have difficulty
reading a 16-bit unsigned integer. The value of this bit
shall always be 0.

A detailed description of each bit in the Operation Status Register follows:

• Bit 0 (Calibrating) is a condition bit which indicates the Counter is

The condition bit is TRUE (one) during a calibration and FALSE (zero)
otherwise.

• Bits 1-3 are not used.

• Bit 4 (Measuring) is a condition bit which indicates the Counter is actively
measuring.

The condition bit is TRUE (one) during a measurement and FALSE (zero)
otherwise.

If the external reference has been explicitly selected and an absent or invalid
signal at the external reference input is detected, then the Counter will not

currently performing a (front-panel invoked or GPIB invoked) calibration.

Programming Your Counter for Remote Operation
Status Reporting

3-33

report Measuring (even though it may perform an auto trigger) in response
to the user initiating a measurement.

• Bits 5-7 are not used.

• Bit 8 (Computing Statistics) is a condition bit which indicates the Counter
has begun collecting measurements for the next statistical computation.

The condition bit is TRUE (one) once the first of N measurements has
begun, and remains TRUE until the last of N measurements has completed.

• Bit 9 (Using Internal Reference) is a condition bit which indicates the
Counter is using the internal reference.

The condition bit is TRUE (one) while the Counter is using the internal
reference. The condition bit is FALSE (zero) while the Counter is using the
external reference.

This bit monitors both explicit and automatic reference changes. Explicit
reference changes occur when you select internal or external using the front-

Automatic reference changes occur when the Counter is configured to select
the reference (automatically) by detecting whether or not an external
reference is being supplied.

• Bit 10 (In Limit Event) is an event bit indicating the last measurement
limit tested was “in limit.”

Each and every time a measurement is limit tested and found to be in limit,
this event will be reported.

Note that this is the only bit in the Operation Status Register which is not
representing a condition. Therefore, the transition filters have no effect on
this bit.

The Counter does not monitor the condition indicating whether the last
measurement was in or out of limit. Hence, the In Limit Event bit does NOT
represent the transition from an “out of limit measurement” to “in limit
measurement.”

• Bits 11-15 are not used.

Questionable Data/Signal Status Register Group

The Questionable Data/Signal Status Register Group monitors
SCPI-defined conditions.

panel Utility menu or the GPIB command, [:SENS]:ROSC:SOUR.

Programming Your Counter for Remote Operation
Status Reporting

3-34

Table 3-7 lists the Questionable Data/Signal Status Register bits and briefly
describes each bit.

Programming Your Counter for Remote Operation
Status Reporting

3-35

Table 3-7. Questionable Data/Signal Status Register

BIT WEIGHT DESCRIPTION

0 Not used

1 Not used

2 4 Time (Period)

3 Not used

4 Not used

5 32 Frequency (only Frequency; not Frequency Ratio)

6 Not used

7 Not used

8 256 Calibration Error

9 Not used

10 1024 Out of Limit Event

11-13 Not used

14 16384 Command Warning

15 Not used since some controllers may have difficulty
reading a 16-bit unsigned integer. The value of this bit
shall always be 0.

A detailed description of each bit in the Questionable Data/Signal Status Register
Group follows:

• Bits 0-1 are not used.

• Bit 2 (Time) is a condition bit which indicates that the Time measurement
(Period) may be affected by the disabling of automatic interpolator
calibration.

The condition bit is TRUE when automatic interpolator calibration is
disabled. The condition bit is FALSE when automatic interpolator
calibration is enabled.

• Bits 3-4 are not used.

• Bit 5 (Frequency) is a condition bit which indicates that

Programming Your Counter for Remote Operation
Status Reporting

3-36

Frequency measurements (this does not include the Frequency Ratio
measurements) may be affected by the disabling of automatic interpolator
calibration.

The condition bit is TRUE when automatic interpolator calibration is
disabled. The condition bit is FALSE when automatic interpolator
calibration is enabled.

• Bit 6 is not used.

• Bit 7 is not used.

• Bit 8 (Calibration Error) is an event bit which indicates that one of the

panel invoked calibration failed,
3) an automatic interpolator calibration failed during the
measurement cycle, or 4) an automatic measurement calibration failed
during the measurement cycle.

Since this is an event bit, the transition filters have no effect on this bit.

• Bit 9 is not used.

• Bit 10 (Out of Limit Event) is an event bit indicating the last measurement
limit tested was “out of limit.”

Each and every time a measurement is limit tested and found to be out of
limit, this event will be reported.

Note that this bit is not representing a condition. Therefore, the transition
filters have no effect on this bit.

The Counter does not monitor the condition indicating whether the last
measurement was in or out of limit. Hence, the Out of Limit Event bit does
NOT represent the transition from an “in limit measurement” to “out of
limit measurement.”

• Bits 11-13 are not used.

• Bit 14 (Command Warning) is an event bit indicating a command, such as
CONFigure or MEASure, ignored a parameter during execution.

Since this is an event bit, the transition filters have no effect on this bit.

• Bit 15 is not used.

following has occurred: 1) an GPIB invoked calibration failed, 2) a front-

Programming Your Counter for Remote Operation
Command Settings for Optimizing Throughput

3-37

Command Settings for Optimizing Throughput
This section lists the commands which enable the Counter to transfer data at the
fastest possible rate. See the “To Optimize Throughput” sample programs on pages
3-70 , 3-86, and 3-97.

Commands to Set Counter for Optimal Throughput
Unless otherwise noted, these settings are stored on Save (*SAV).
All of these settings are reset by *RST or a power cycle.

Disable auto trigger on measurement channel(s) :

Specify absolute trigger level and disable auto trigger —
[:SENSe]:EVENt:LEVel[:ABSolute] <numeric_value> [V]

or simply disable auto-trigger —
[:SENSe]:EVENt:LEVel[:ABSolute]:AUTO OFF

Set gate/arm to auto for appropriate measurement :

For Frequency, Period, and Ratio —

[:SENSe]:FREQuency:ARM[:STARt]:SOURce IMMediate
[:SENSe]:FREQuency:ARM:STOP:SOURce IMMediate

Define device trigger to FETC?:

When the device trigger is defined as FETC?, the Group Execute Trigger should be
used to query for a result.

*DDT #15FETC?

Set reference oscillator to non-auto state (internal or external):
[:SENSe]:ROSCillator:SOURce INTernal | EXTernal (See Note below.)

Note: This value is not stored on Save and is not part of the non-volatile state.

Programming Your Counter for Remote Operation
Command Settings for Optimizing Throughput

3-38

Disable checking of external source if using external reference oscillator:

[:SENSe]:ROSCillator:EXTernal:CHECk OFF (See Note below.)

Disable automatic interpolator calibration :

:DIAGnostic:CALibration:INTerpolator:AUTO OFF (See Note below.)

Disable display:

:DISPlay:ENABle OFF (See Note below.)

Disable printing:

:HCOPy:CONTinuous OFF

Disable post-processing (math, limit testing, statistics):

:CALCulate:MATH:STATe OFF

:CALCulate2:LIMit:STATe OFF

:CALCulate3:AVERage[:STATe] OFF

Specify expected frequency for Frequency, Period, and Ratio measurements :

[:SENSe]:FREQuency:EXPected[1|2] <numeric_value> [HZ] (See Note below.)

Specify ASCII format for result query responses:

:FORMat[:DATA] ASCii

Specify continuous measurements :

:INITiate:CONTinuous ON

Configure the read/fetch function memory :

Issue the following query and read the response.

:FETCh[:SCALar]:<function>?

Note: This value is not stored on Save and is not part of the non-volatile state.

Typical Optimizing Throughput Results for Different Computers

Table 3-8 lists the typical performance for three different computers. The “To
Optimize Throughput” sample programs on pages 3- 70 , 3-86, and 3-97 were used

Programming Your Counter for Remote Operation
Command Settings for Optimizing Throughput

3-39

to generate the numbers in the table. The actual examples listed in this guide show
the Frequency Auto Arming function, but the technique is the same for the other
function (Frequency Time Arming .001). You only have to change the function in
the program to generate the numbers in the table.

Table 3-8. Typical Optimizing Throughput Results in Measurements
per Second

Function

IBM PC Compatible
486/25 MHz Basic Language

Processor

Frequency
Auto Arming 200 190 195

Frequency
Time Arming .001 155 155 160

Agilent 82324A Agilent 9000 Series
300 Model 360

Agilent 82335A Card

Programming Your Counter for Remote Operation
How to Program the Counter for Status Reporting

3-40

How to Program the Counter for Status
Reporting
Determining the Condition of the Counter
The Counter has status registers that are used to indicate its condition. There are
four register groups that can be examined individually, or used to alert a computer.
These registers, shown in Figure 3-6, are:

• Operation Status Register Group

• Questionable Data/Signal Register Group

• Standard Event Status Register Group

• Status Byte Register Group

The first three groups all have event registers that can be fed into the Status Byte

and thus alert the computer that the Counter needs attention. The following
examples show how each of the register groups can be used. (Figure 3-10 is a
flowchart diagram of how to program the Counter for Status Reporting.)

Example 1
Before attempting any programming, it is a good idea to set the Counter to a known
state . The following command grouping shows how to reset the Counter. Before
issuing these commands, execute a device clear to reset the interface and Counter.
Consult your interface card's documentation for how to issue a device clear since the
device clear command will be specific to the interface you are using. Perform the
following:

1. Issue a Device Clear (See your computer or interface card
 documentation for how to issue this command).

2. Issue the following commands:

*RST
*CLS
*SRE 0
*ESE 0
:STAT:PRES

Register. The Status Byte Register can be used to assert the SRQ line of the GPIB

Resetting the Counter and Clearing the GPIB Interface—

Programming Your Counter for Remote Operation
How to Program the Counter for Status Reporting

3-41

Using the Standard Event Status Register to Trap an Incorrect

The following command grouping shows how to use the Standard Event Status
Register and the Status Byte Register to alert the computer when an incorrect
command is sent to the Counter. The command *ESE 32 tells the Counter to
summarize the command error bit (bit 5 of the Event Status Register) in the Status
Byte Register. The command error bit is set when an incorrect command is received
by the Counter. The command *SRE 32 tells the Counter to assert the SRQ line
when the Event Status Register summary bit is set to 1. If the Counter is serial
polled after a command error, the serial poll result will be 96.

Event Status Register

*ESE 32

*SRE 32

Enable for bad command.

Assert SRQ from Standard Event Status Register summary.

Using the Questionable Data/Signal Status Register to Alert the
Computer When Automatic Interpolator Calibration is Disabled—
Example 3
The default operation of the Counter is for automatic interpolator calibration to

automatic calibration can be disabled. When it is disabled, the most recent
calibration values are used. These values may not be the optimal values for a
particular temperature or other environmental condition. For this reason, the Time
and Frequency bits in the Questionable Data register are set whenever the automatic
calibration is disabled.

In the following Questionable Data Status Register example, the first line tells the
Counter to detect a transition from negative
(non-questionable data) to positive (questionable data) of bits 2, 5, and 6 in the
Questionable Data Register. The next line tells the Counter to summarize the
detected events in the Status Byte Register. The command *SRE 8 tells the Counter
to assert the SRQ line when the summary bit for the Questionable Data register is
set to 1. A serial poll will return the value 72 when the automatic calibration
transitions from on to off.

GPIB command— Example 2

occur before every measurement. To optimize throughput over the GPIB, the

Programming Your Counter for Remote Operation
How to Program the Counter for Status Reporting

3-42

Questionable Data Status Register

:STAT:QUES:PTR 100; NTR 0

:STAT:QUES:ENABLE 100

*SRE 8

Detect transition from non-questionable to
questionable data.
Enable to detect for auto cal off.

Assert SRQ on Questionable Summary bit.

Using the Operation Status Register to Alert the Computer When
Measuring has
Completed— Example 4
The following command grouping illustrates how to use the Operation Status
register and the Status Byte register to alert the computer when measuring has
completed. This is useful if the Counter is making a long measurement. For
example, a frequency measurement with a gate time of 10 seconds. When the
measurement is complete, the Counter can alert the computer.

The first line tells the Counter to watch for a negative transition from true
(measuring) to false (non-measuring) of bit 4. This negative transition indicates that
the Counter has completed a measurement. The next line tells the Counter to
summarize the detected event (bit 4 of the Operation Status Register) in the Status
Byte Register. The command *SRE 128 tells the Counter to assert SRQ when the
summary bit for the Operation Status register is set to 1. A serial poll will return
192 when a measurement has completed.

Operation Status Register

:STAT:OPER:PTR 0; NTR 16

:STAT:OPER:ENABLE 16

*SRE 128

Detect transition from measuring to non-
measuring.
Enable to detect measuring.

Assert SRQ on Operation Summary bit.

Programming Your Counter for Remote Operation
How to Program the Counter for Status Reporting

3-43

Figure 3-10. Status Reporting Flowchart (1 of 2)

Programming Your Counter for Remote Operation
How to Program the Counter for Status Reporting

3-44

Figure 3-10. Status Reporting Flowchart (2 of 2)

Use the following:

*SRE 248

This enables any of the available
bits to generate the RQS/MSS
bit to set bit 6 in the Status Byte
Register and send an SRQ inter-
rupt to the Computer. (See Note 1)

NO

YES

YES

When an interrupt occurs, perform
a Serial poll.

Is SRQ
interrupt enabled?

From sheet 1 of 2

Do you
want to send a

Service Request (SRQ)
interrupt to the

computer?

Activate the Counter function that
you want to monitor. For example,
use the following:

INIT

This initiates the selected
measurement.

Write a subroutine to determine
which bits in the Status Byte
Register are set.

Initiate the Counter function that you want
to monitor. For example, use the following:

INIT

This initiates the selected measurement.

To read the Status Byte Register, use the
following:

*STB?
enter A
print A

This reads the decimal value of the Status
Byte Register. (You can also use the serial
poll command to read this value.)

If bit 3 (QSB) is set, use the following:

:STAT:QUES:EVENt?

This returns the decimal value of the event
register. It also clears the register so that
subsequent events can be monitored.

If bit 5 (ESB) is set, use the following:

*ESR?

This returns the decimal value of the event
register. It also clears the register so that
subsequent events can be monitored.

If bit 7 (OSB) is set, use the following:

:STAT:OPER:EVEN?

This returns the decimal value of the event
register. It also clears the register so that
subsequent events can be monitored.

Write the necessary subroutines
to determine which events have
occured and what actions are
required.

NO

Are you
planning to

monitor the OPC bit of
the Event Status

Register?

Enable OPC bit of Event Status
Register:

*OPC

YES

If bit 4 (MAV) is set, read the message in
the Output Queue. How you do this de-
pends on what data is expected.

NO

(See Note 2)

Programming Your Counter for Remote Operation
How to Program the Counter to Display Results

3-45

How to Program the Counter to Display Results
Configuring the Counter's Display
The Counter has five different display modes:

1. Non-scaled/offset results - frequency, period, or ratio. This display
 mode is used on power-up.

2. Scaled/offset results - results modified by scale and offset values

3. Limit graph - a graphical look that shows if a measurement is
 within limits

4. Statistics - mean, min, max or standard deviation

5. Display Enable - All segments and LEDs (except Remote and SRQ)
 enabled or disabled.

The following command groupings show how to program the Counter to any of the
above display modes.

Commands for Displaying Non-Scaled/Offset Results
The following lines will always show the raw (non-scaled/offset) measurement
result.

:DISP:MENU OFF

:DISP:TEXT:FEED 'CALC2'
:CALC2:LIM:DISP NUMBER
:CALC:MATH:STATE OFF
:CALC:IMM

Clear any menu items that may be on
display.
Show the non-statistical result.
Use the numeric display mode.
Disable math so scale and offset not used.
Cause a calculation to be made to update display.

Note that :CALC2:LIM:DISP NUMBER will only show the raw result if the
command :DISP:TEXT:FEED 'CALC2' is also issued. These commands must be
issued in pairs.

Programming Your Counter for Remote Operation
How to Program the Counter to Display Results

3-46

Commands for Displaying Scaled/Offset Results
The following lines will enable Math (scale/offset). It is assumed that the values for
scale and offset are already set. If not, the default value for scale is 1 and for offset
is 0.

:DISP:MENU OFF

:DISP:TEXT:FEED 'CALC2'
:CALC2:LIM:DISP NUMBER
:CALC:MATH:STATE ON
:CALC:IMM

Clear any menu items that may be on
display.
Show the non-statistical result.
Use the numeric display mode.
Enable math.
Cause a calculation to be made to update display.

Note that :CALC2:LIM:DISP NUMBER will only show the raw result if the
command :DISP:TEXT:FEED 'CALC2' is also issued. These commands must be
issued in pairs.

Commands for Displaying the Limit Graph
The following lines enable limit testing and show the limit graph. If the Math is
enabled, the scale and offset will be applied to the measurement result before being
tested for the limit graph.

:DISP:MENU OFF

:DISP:TEXT:FEED 'CALC2'
:CALC2:LIM:STATE ON
:CALC2:LIM:DISP GRAPH
:CALC:IMM

Clear any menu items that may be on
 display.
Show the non-statistical result.
Enable limit testing.
Display the limit test result graph.
Cause a calculation to be made to update
display.

Commands for Displaying Statistics Results
The following lines enable Statistics. The default value displayed is Mean.

:DISP:MENU OFF
:DISP:TEXT:FEED 'CALC3'
:CALC3:AVER ON

Clear any menu items that may be on display.
Show statistical results.
Enable statistics.

Programming Your Counter for Remote Operation
How to Program the Counter to Display Results

3-47

Commands for Enabling and Disabling the Display
The Counter display can be turned on or off. The normal condition is for the display

:DISP:ENABLE OFF
:DISP:ENABLE ON

Disable the display, all segments off.
Normal display mode.

to be on. To achieve maximum GPIB throughput, the display must be disabled.

Programming Your Counter for Remote Operation
How to Program the Counter to Synchronize Measurements

3-48

How to Program the Counter to Synchronize
Measurements
Synchronizing Measurement Completion
The Counter has three different methods for synchronizing the end of a
measurement and computer transfer of data. The three methods are:

1. Using the *WAI command

2. Using the *OPC? command

3. Using the *OPC command to assert SRQ

The following discussion shows how to use all three methods.

Before attempting any programming, it is a good idea to set the Counter to a known
state. The following command grouping illustrates how to reset the Counter. Before
issuing these commands, execute a device clear to reset the interface and Counter.
Consult your interface card's documentation for how to issue a device clear since the
device clear command will be specific to the interface you are using. Perform the
following:

1. Issue a Device Clear. (See your computer or interface card
 documentation for how to issue this command.)

2. Issue the following commands:

*RST
*CLS
*SRE 0
*ESE 0
:STAT:PRES

Using the *WAI Command
This method is most useful when only the Counter is on the bus and you want the
Counter to send the data when it is ready. In this example, the Counter is instructed
to take 50 measurements and return the statistics for these 50 measurements. After
the :INIT command is issued, the Counter is instructed to hold off execution of any
more commands by the *WAI command. When the Counter has completed the 50
measurements and statistics, it executes the :CALC3:AVERAGE:ALL? command,
which asks for the results.

Resetting the Counter and Clearing the GPIB Interface

Programming Your Counter for Remote Operation
How to Program the Counter to Synchronize Measurements

3-49

:CALC3:AVERAGE ON

:CALC3:AVERAGE:COUNT 50

:TRIG:COUNT:AUTO ON

:INIT

*WAI

:CALC3:AVERAGE:ALL?

Enable statistics.

Base statistics on 50 measurements.

On INIT, take 50 measurements.

Start 50 measurements.

Wait until 50 measurements are complete
before Counter executes another
command. At this point, commands
could be issued to other instruments.
Asks for the statistics. This command,
will not be executed until the 50th
measurement is complete.

Using the *OPC? Command
This method is useful if you want to hold off execution of the program while you
wait for the Counter to complete any pending activity. In the *WAI example above,
the line following the *WAI command is accepted by the Counter. However, the
Counter does not execute the command because of the preceding *WAI command.
If this line had been a command to address another instrument, it would be
immediately executed. If you had wanted to hold off the command to another
instrument, you would use the *OPC? command instead of the *WAI command.

:CALC3:AVERAGE ON

:CALC3:AVERAGE:COUNT 50

:TRIG:COUNT:AUTO ON

:INIT

*OPC?

Enable statistics.

Base statistics on 50 measurements.

On INIT, take 50 measurements.

Start making measurements.

Tell Counter to put a 1 in the output buffer
when 50th measurement is complete.

Programming Your Counter for Remote Operation
How to Program the Counter to Synchronize Measurements

3-50

Read the Counter. The program will wait here until the Counter returns a 1.

:CALC3:AVERAGE:ALL? Ask for statistics.

Using the *OPC Command to Assert SRQ

instruments, any of which can assert SRQ. The commands *OPC, *ESE 1 and
*SRE 32 are used to assert the SRQ line to alert the computer that the Counter has
completed a measurement. It is up to the computer to use the serial poll command
to determine which of the instruments on the bus requested service.

Of the three procedures discussed here, this is the most flexible, but also the most
complex.

:CALC3:AVERAGE ON

:CALC3:AVERAGE:COUNT 50

:TRIG:COUNT:AUTO ON

*ESE 1

*SRE 32

Enable statistics.

Base statistics on 50 measurements.

On INIT, take N measurements.

Summarize OPC bit for Status Byte
Register.
SRQ when event summary bit is 1 .

Set up program to specify service routine and enable interrupt when SRQ is
asserted.

*OPC
:INIT

Enable OPC bit.
Start measurements.

Program could be doing other things while waiting for SRQ.

When SRQ occurs and the Counter has been identified as the cause of the SRQ, ask
for the data:

:CALC3:AVERAGE:ALL? Ask for statistics.

This method is recommended when the Counter is on the GPIB with many other

Programming Your Counter for Remote Operation
How to Program the Counter for Math/Limit Operations

3-51

How to Program the Counter for Math/Limit
Operations

When using the Limits or Math capabilities from the front panel, the default
(power-up) operation is for results to be automatically updated whenever a value is
updated in either the Limit or Scale&Offset menu. For example, entering a scale
value automatically enables Math and updates the result in the display to reflect the
changes. Similarly, entering either an upper or lower limit automatically enables
Limit Testing. If, after entering a value in either of these menus, you do not want
limits or math, you must go to the appropriate menu item and turn off limits or
math.

When the Counter is programmed, there are additional issues that must be
addressed.

The first thing done in most programs is to put the Counter in a known state using
*RST. The *RST command resets the Counter. One of the things this command
does is disable the automatic
post-processing of Limit and Math operations . What this means is, that if you
set a limit, scale or offset value, and enable Limits or Math, the answer will not
be automatically updated to reflect the Limit or Math values. Whenever a new
measurement is made, the result will be updated, but, if the Counter is in Single
mode, changing the Limits or Math will not result in an automatic re-calculation.

There are two things you can do to make sure the results are updated. One is to send
the command :CALC:IMM:AUTO ON after the *RST command. This will cause
the results to be updated whenever a limit, scale or offset value is changed. The
benefit with this command is that you only have to send this command once and the
Counter will always return data that reflects the current limit or scale/offset settings.
One potential drawback is that results you may not care about can occur, possibly
causing an unexpected event (like an SRQ or out-of-limit condition). For example,
if you wanted to change the scale and offset, you might first send the scale value.
With :CALC:IMM:AUTO ON, the scale value will be immediately applied, before
the offset value is received. You may not care what this scaled-only value is, but it
may cause an out-of-limit condition, which may in turn cause an SRQ, neither of
which you might have expected.

The other option is to program the Counter to update post-processed results only
when you tell it to. This is accomplished by sending the command :CALC:IMM
after you send all of the limits or scale/offset values. This way, no intermediate

Updating Math and Limit Results Over GPIB

Programming Your Counter for Remote Operation
How to Program the Counter for Math/Limit Operations

3-52

results are calculated. The only drawback with this command is that you must
always send it when you change the limits or scale/offset values.

The section in this chapter titled “How to Program the Counter to Display Results”
uses the :CALC:IMM technique to make sure the results are properly displayed.

Using the scale and offset values over the bus is different from setting any other
value.

The commands for setting the scale and offset are in the TRACE subsystem. For
example, if you make a frequency measurement and want to set the scale to 5.0 and
the offset to 100 Hz, send the following commands:

:TRACE SCALE, 5
:TRACE OFFSET, 100

Set scale value.
Set offset value.

The above commands just set the values. To enable them, Math must be turned on,
and the results processed as described in the previous section:

:CALC1:MATH:STATE ON
:CALC:IMM

Enable math.
Process results using scale and offset.

If you then wanted the to have the Counter's display show the processed results, the
following commands must be issued:

:DISP:MENU OFF

:DISP:TEXT:FEED 'CALC2'
:CALC2:LIM:DISP NUMBER

Clear any menu items that may be on
display.
Show the non-statistical result.
Use the numeric display mode.

If you need to query the scale and offset values, you need to know if you

are in ASCII or REAL data format. The values returned from the following query
will be sent using the format that is currently defined (:FORMat[:DATA]) in the
box. To query the scale, use the following command:

:TRACE? SCALE

Then, enter the data, keeping in mind how it will be formatted (ASCII or REAL).

Using the Scale and Offset Over GPIB

Programming Your Counter for Remote Operation
How to Program the Counter to Define Macros

3-53

How to Program the Counter to Define Macros
A macro is a user defined command that can be used to replace one or many
Counter commands. There are two good reasons to use macros in place of other
commands:

1. They provide a mnemonic for long or complex commands.

2. They reduce the overhead associated with sending long
 commands.

For example, if you often want the Counter to display the limit graph, you can
replace the following string of commands with a macro called 'limitresult' (you can
provide any name you wish).

:DISP:MENU OFF;:DISP:TEXT:FEED 'CALC2';
:CALC2:LIM:STATE ON;:CALC2:LIM:DISP GRAPH

Anytime you wanted to display the limit graph, you would just send the command
'limitresult'.

To assign the macro 'limitresult' to the above command sequence, you would send
the following:

*DMC 'limitresult',#280:DISP:MENU OFF;
:DISP:TEXT:FEED 'CALC2';:CALC2:LIM:STATE ON;
:CALC2:LIM:DISP GRAPH

The #2 indicates that the next two characters contain the length of the command, in
this example, 80 characters. To program a macro, you need to know the length of
characters in the command. This can be tedious and is prone to users counting
incorrectly. The “To Use Macros” sample programs on pages 3- 73 and 3-88, can be
used to help set up macros and perform the counting for you.

A macro also lets you send variable parameters along with the name. For example,
you could have a macro that sets up a measurement channel. One of the variables
may be the input impedance, either 50 Ohms or
1 Megaohm. To program this, you would send the macro name along with the
impedance value. To assign a variable inside the macro definition, you would
replace the normal parameter with a $ followed by a number from 1 to 9. Up to 9
variables can be assigned. When sending the macro, the

Programming Your Counter for Remote Operation
How to Program the Counter to Define Macros

3-54

first parameter would be assigned to the $1 and all occurrences of $1
in the macro. The second parameter would be assigned to $2 and so on. Here is
what the macro called 'setimp' would look like. It changes the impedance on
channel 1 to the value assigned to $1 in the macro command.

*DMC 'setimp',#212:INP1:IMP $1

To change the impedance to 50 ohms, send:

setimp 50

The above is a very simple example. Macros are best used for a long sequence of
commands. A good use for macros is changing the display from one format to
another. To change to the limit graph, the following commands must be sent:

:DISP:MENU OFF
:DISP:TEXT:FEED 'CALC2'
:CALC2:LIM:STATE ON
:CALC2:LIM:DISP GRAPH
:CALC:IMM

These commands can all be replaced by a macro called 'limitdisplay', defined as
follows:

*DMC 'limitdisplay',#290:DISP:MENU OFF;
:DISP:TEXT:FEED 'CALC2';:CALC2:LIM:STATE ON;
:CALC2:LIM:DISP GRAPH;:CALC:IMM

There is a finite amount of memory available in the Counter for storing macros. If
you find that you are running low on memory, you can shorten the commands as
follows:

1. Do not send the complete path unless it is necessary.

2. Use 1 and 0 instead of ON and OFF for <Boolean> parameters.

3. Use the short form for keywords, INP for INPut, FUNC for
 FUNCtion and so on.

The above example for switching to the limit display can be significantly decreased
in length using these shortcuts:

*DMC 'limitdisplay',#268
:DISP:MENU 0;TEXT:FEED 'CALC2';:CALC2:LIM:STAT 1;DISP GRAP;
:CALC:IMM

Programming examples using macros are provided in the following section titled
“Programming Examples.” The first macro program listing (starting on page 3- 73)
uses BASIC for an HP 9000 series 300 computer. The second Macro program

Programming Your Counter for Remote Operation
How to Program the Counter to Define Macros

3-55

listing (starting on page 3- 88) is for an IBM PC (or clone) and Agilent 82335A/B card.
Both are softkey driven and can be used to define macros, enable or disable macros,
determine what macros are available and purge macros. There is little error
trapping in the programs, if you misspell a command, the Counter will give an error
message.

Programming Your Counter for Remote Operation
Writing SCPI Programs

3-56

Writing SCPI Programs
Figure 3-11 is a general summation of how to write SCPI programs . It shows a
typical sequence you might go through in the process of writing a program. You do
not have to follow this exact sequence, but it will help you to become familiar with
the Counter's capabilities and to direct you to sections of the guide which will be
useful while writing programs.

Programming Your Counter for Remote Operation
Writing SCPI Programs

3-57

Figure 3-11. SCPI Programming Flowchart (Sheet 1 of 2)

Reset and initialize the Counter
as follows:
Device Clear
*RST
*CLS
*SRE 0
*ESE 0
:STAT:PRES

YES

Configure status reporting.
See section titled "Status
Reporting" in this chapter.
See Chapter 4, :STATus,*ESE,
and *SRE.
See status reporting program-
ming examples in this chapter.

NO

Go to
Sheet
2 of 2

Do you
want to print to
serial printer?

Configure RS232 and enable
printing.
See Figure 2-2.
See Chapter 4,
:SYSTem:COMMunicate and
:HCOPy.

YES

NO

YES

NO

Do you want to
perform post-processing

of existing
data?

NO

YES

YES

NO

Set the input conditions to match your
signal.
See Figure 2-1.
See Chapter 4, :INPut.

See Chapter 4, :MEASure.
See "Easiest Way to Make a Measurement"
programming example in this chapter.

Set scale/offset and enable math.
See Figure 2-5.
See Chapter 4, :CALCulate1 and :TRACe[:DATA]
See "How to Program the Counter for Math/Limit
Operations" in this chapter.

YES

NO

YES

NO

Set limts and enable limit testing.
See Figure 2-5.
See Chapter 4, :CALCulate2.
See programming example "To Perform Limit Testing" in this chapter.

Use :CALC[1|2]:IMMediate to invoke post-processing.

To transfer raw measurement data, see Chapter 4, [:SENS]:DATA?
To transfer scaled/offset result, see Chapter 4, :CALC1:MATH:DATA?
To transfer limit test result, see Chapter 4, :CALC2:LIMit:FAIL?,
:CALC2:LIMit:FCOunt, :CAL2:LIMit:PCOunt?

B

A

From
Sheet
2 of 2

Do you
want to do Status

Reporting?

Do you
want to make a new

measurement?

Do you want to
make a "generic"
measurement?

Do you
want to scale/offset

result?

Do you
want to limit test?

To perform other functions:
To save or recall setups, see
Figure 2-2 and/or *SAV, *RCL.
To control display (of results) see
section titled "How to Program the
Counter to Display Results" in this
chapter.
To calibrate, see Figure 2-2 and/or
Chapter 4 :DIAGnostic:CALibration.
To self-test, see Figure 2-2 and/or
Chapter 4, *TST?
To use macros, see section titled
"How to Program the Counter to
Define Macros," Programming
example "To Use Macros", and
Chapter 4, *DMC, *EMC, *GMC,
*LMC, *PMC, and :MEMory.

Programming Your Counter for Remote Operation
Writing SCPI Programs

3-58

Figure 3-11. SCPI Programming Flowchart (Sheet 2 of 2)

From sheet 1 of 2

YES

NO

YES

Do you
want to scale/offset

result?

Do you
want to limit test?

 Do you
want to compute

statistics?

YES

Enable and configure Statistics.
See Figure 2-5.
See Chapter 4, :CALCulate 3 and
:TRIGger:COUNt:AUTO.
See Programming example(s) "To Measure
the Statistics of 50 Measurements", and "To
Use Limits to Filter Data Before Measuring
Stats" in this chapter.

Do you want to
perform post-processing

of existing
data?

YES

YES

NO

To transfer raw measurement data, see Chapter 4, [:SENS]:DATA?
To transfer scaled/offset result, see Chapter 4, :CALC1:MATH:DATA?
To transfer limit test result, see Chapter 4, :CALC2:LIMIt :FAIL?,
:CALC2:LIMIt:FCOunt, :CALC2:LIMIt:PCOunt?
To transfer statistics resullts, see Chapter 4, :CALC3:AVER:ALL?

See the section titled "Command Settings for
Optimizing Throughput" in this chapter.
See programming example "To Optimize
Throughput" in this chapter.

NO

Initiate a measurement.
See Figure 2-2.
See Chapter 4, :INITiate.

To sheet 1 of 2

B

A

NO

NO

Initiate a block of measurements.
See Chapter 4, :TRIGger:COUNt:AUTO
and :INIT.

Select the function you want to perform.
See Figure 2-3.
See [:SENS]:FUNC in Chapter 4.

Set the input conditions and trigger settings to
match your signal.
See Figure 2-1.
See Chapter 4, :INPut and [:SENS]:EVENt.

Select arming/gate settings.
See Figure 2-4.
See Chapter 4, [:SENS]:FREQ:ARM.

Set scale/offset and enable math.
See Figure 2-5.
See Chapter 4, :CALCulate1 and :TRACe[:DATA].
See "How to Program the Counter for Math/Limit
Operations" in this chapter.

Set limts and enable limit testing.
See Figure 2-5.
See Chapter 4, :CALCulate2.
See programming example "To Perform Limit
Testing" in this chapter.

Do you
want to maximize

throughput?

Programming Your Counter for Remote Operation
Programming Examples

3-59

Programming Examples

measurements. Examples are provided in the following programming languages:

• Microsoft  QuickBASIC (version 4.5) *

• Borland Turbo C**

This guide uses doubles quotes to enclose string parameters in syntax descriptions,

The Counter allows string parameters to be enclosed by either double or single
quotes. Each method is discussed in the following sub-sections.

To Send a Double-Quoted String

quotes need special consideration. For example, send the FUNC "FREQ 1"
command with the following:

OUTPUT 703;"FUNC ""FREQ 1"""
Note that a pair of double quotes (as shown in bold) is required by

To Send a Single-Quoted String

following:

OUTPUT 703;"FUNC 'FREQ 1'"
Note the pair of single quotes (as shown in bold) is more readable.

* Microsoft is a U.S. registered trademark of Microsoft Corporation.
** Turbo C is a product of Borland International, Inc.

In this section, you will see how to program the Agilent 53181A to make many common

• BASIC

Using BASIC

but uses single quotes in the BASIC programming examples for readability.

For the BASIC OUTPUT statements, remember that strings enclosed in double

BASIC to embed a double quote within an BASIC string.

For more readable BASIC OUTPUT statements, you may send, for example, the

Programming Your Counter for Remote Operation
Programming Examples

3-60

Using QuickBASIC

Using Turbo C

List of the Programming Examples
The following examples are provided:

2. To Make a Frequency Measurement

 QuickBASIC only)

5. To Use Limits to Filter Data Before Measuring Statistics.

6. To Read and Store Calibration Data — this program is useful if

 be able to return to the original calibration at a later date.

7. To Optimize Throughput; that is, to set up the Counter to transfer
 data at the fastest possible rate.

8. To Use Macros

All programming examples use the ASCII format to transfer data from the Counter
to the computer. The ASCII format is the default format when *RST is used.

NOTE

The QuickBASIC examples assume you have an Agilent 82335A
GPIB Interface card inside your IBM PC or compatible.

The Turbo C examples assume you have an Agilent 82335A
GPIB Interface card inside your IBM PC or compatible.

1. Easiest Way to Make a Measurement (BASIC only)

3. To Perform Limit Testing (BASIC and QuickBASIC only)

4. To Measure the Statistics of 50 Measurements (BASIC and

 you plan to calibrate your Agilent 53181A and want to

 (BASIC and QuickBASIC only)

Programming Your Counter for Remote Operation
Programming Examples

3-61

10 ! This program shows how to use the MEASure group of instructions to
20 ! quickly and easily make any of the counter's measurements.
30 ! In this program, frequency and period will be measured.
40 ! However, the MEASure group can make measurements using any of the other
50 ! counter functions.
60 ! The program is composed of three subroutines. The first uses only
70 ! the MEAS:FREQ? (@1) command to make a frequency measurement. The
80 ! second subroutine uses CONF:FREQ and READ? to make a measurement.
90 ! The third uses CONF:FREQ, INIT and FETCH? to make a measurement.
100! The comments at the start of each subroutine explain the benefits of
110! each method.
120 INTEGER I ! Declare variables
130 DIM Freq$[22] ! Declare string to enter data
140 DIM Period$[22] ! Using strings to enter ASCII format
150 ! data yields results formatted to the
160 ! correct resolution. ASCII is the
170 ! default format for the counter.
180 ! The following commands reset the counter
190 ASSIGN @Count TO 703 ! Assign I/O path for counter
200 CLEAR 703 ! Clear the counter and interface
210 OUTPUT @Count;"*RST" ! Reset the counter
220 OUTPUT @Count;"*CLS" ! Clear event registers and error queue
230 OUTPUT @Count;"*SRE 0" ! Clear service request enable register
240 OUTPUT @Count;"*ESE 0" ! Clear event status enable register
250 OUTPUT @Count;":STAT:PRES" ! Preset enable registers and transition
260 ! filters for operation and questionable
270 ! status structures.
280 GOSUB Measure ! Call subroutines to make measurements
290 LINPUT "Press RETURN for CONF and READ",A$
300 GOSUB Conf_read
310 LINPUT "Press RETURN for CONF, INIT and FETC",A$
320 GOSUB Init_fetc
330 STOP
340 !
350 !
360 Measure:! Use the MEAS:FREQ? (@1) command
370 ! The MEAS:FREQ? (@1) query initiates a complete measurement
380 ! sequence. It configures the counter for a channel 1 frequency
390 ! measurement, starts the measurement and asks for the data. The MEAS
400 ! command is the simplest (and least flexible) way to make a measurement
410 ! and collect data.
420 ! Make sure a signal is connected to the channel 1 input.
430 PRINT "Frequency channel 1 measured using MEAS:FREQ? (@1)"
440 OUTPUT @Count;"MEAS:FREQ? (@1)" ! Configure for frequency CH 1
450 ! and query counter for results.
460 ENTER @Count;Freq$
470 PRINT
480 PRINT "Frequency channel 1 = ";Freq$
490 PRINT
500 RETURN
510 !
520 !
530 Conf_read:! Use CONF and READ? command
540 ! The following commands will measure the frequency on channel 1.
550 ! The MEAS? query can be broken down into CONF and READ? commands.
560 ! The CONF and READ? allow more flexibility than the MEAS? query.

Easiest Way to Make a Measurement (BASIC)

Programming Your Counter for Remote Operation
Programming Examples

3-62

570 ! CONF can be used to configure a measurement. Additional commands
580 ! can then be issued to fine tune the measurement setup. The READ? command

590 ! than reads the result. In the following example, a frequency measurement
600 ! is configured, then, as an example for changing the setup created by
610 ! the CONF command, the counter is programmed for a trigger level of 50
 ! mV.
620 ! (The CONF command tells the counter to use the AUTO trigger level mode)
630 ! Finally, the data is read using the READ? command.
640 PRINT
650 PRINT "Frequency measured using CONF:FREQ (@1) and READ?"
660 OUTPUT @Count;"CONF:FREQ (@1)" ! Configure for frequency measurement
670 OUTPUT @Count;":EVENT1:LEVEL .05" ! Set trigger level to 50 mV
680 OUTPUT @Count;"READ?" ! Ask for data
690 ENTER @Count;Freq$
700 PRINT
710 PRINT "Frequency = ";Freq$
720 PRINT
730 RETURN
740 !
750 !
760 Init_fetc:! Use INIT and FETCH to read frequency and period
770 ! The READ? command can be broken down into INIT and FETCH?, providing
780 ! even more measurement flexibility. By using FETCH?, you can retrieve
790 ! results based on already acquired data. For example, period can be
800 ! derived from a frequency measurement, without a new acquisition.
810 ! The following example uses CONF to set up a frequency measurement.
820 ! The trigger level is then changed to -50 millivolts and an INIT is
830 ! performed, starting the measurement process. The data is read using
840 ! the FETCH:FREQUENCY? command. The period can then be read by sending
850 ! FETCH:PERIOD?, this time asking for the period.
860 PRINT
870 PRINT "Frequency and Period measured using CONF:FREQ (@1), INIT, FETCH?"
880 OUTPUT @Count;"CONF:FREQ (@1)" ! Configure for frequency measurement
890 OUTPUT @Count;":EVENT1:LEVEL -.05" ! Change trigger level
900 OUTPUT @Count;"INIT" ! Start a measurement
910 OUTPUT @Count;"FETCH:FREQUENCY?" ! Ask for frequency result
920 ENTER 703;Freq$
930 PRINT
940 PRINT "Frequency = ";Freq$
950 OUTPUT @Count;"FETCH:PERIOD?" ! Ask for period result derived from
960 ! frequency measurement. Note that
970 ! another measurement was not made.
980 ENTER @Count;Period$
990 PRINT
1000 PRINT "Period = ";Period$
1010 PRINT
1020 RETURN
1030 END

Easiest Way to Make a Measurement (BASIC) (Continued)

Programming Your Counter for Remote Operation
Programming Examples

3-63

10 ! This program sets up the counter to make 10 frequency
20 ! measurements on channel 1, using a 0.1 second gate time.
30 ! The results are displayed on the computer CRT.
40 ! ASCII format is used to preserve resolution.
50 !
60 INTEGER I ! Declare variables
70 DIM Freq$(10)[22] ! Declare string to enter data
80 ! Using strings to enter ASCII format
90 ! data yields results formatted to the
100 ! correct resolution. ASCII is the
110 ! default format for the counter.
120 Samples=10 ! Take 10 measurements
130 !
140 ASSIGN @Count TO 703 ! Assign I/O path for counter
150 CLEAR 703 ! Clear the counter and interface
160 OUTPUT @Count;"*RST" ! Reset the counter
170 OUTPUT @Count;"*CLS" ! Clear event registers and error queue
180 OUTPUT @Count;"*SRE 0" ! Clear service request enable register
190 OUTPUT @Count;"*ESE 0" ! Clear event status enable register
200 OUTPUT @Count;":STAT:PRES" ! Preset enable registers and
210 ! transition filters for operation and
220 ! questionable status structures.
230 OUTPUT @Count;":FUNC 'FREQ 1'" ! Measure frequency on channel 1
240 OUTPUT @Count;":FREQ:ARM:STAR:SOUR IMM" ! These three lines enable
250 OUTPUT @Count;":FREQ:ARM:STOP:SOUR TIM" ! Using time arming, with a
260 OUTPUT @Count;":FREQ:ARM:STOP:TIM .100" ! 0.1 second gate time
270 !
280 CLEAR SCREEN ! Clear the computer display
290 FOR I=1 TO Samples ! Start making measurements
300 OUTPUT @Count;"READ:FREQ?" ! Start a measurement and
310 ! fetch the data
320 ENTER @Count;Freq$(I) ! Enter the frequency
330 PRINT USING "11A,DD,4A,22A,3A";"Frequency (";I;") = ";Freq$(I);" Hz"
340 NEXT I
350 LOCAL 703 ! Return counter to local
360 END

To Make a Frequency Measurement (BASIC)

Programming Your Counter for Remote Operation
Programming Examples

3-64

10 ! This program sets up the counter to make period measurements
20 ! indefinitely until an out of limits measurement occurs.
30 ! The upper limit is 1 usec and the lower limit is 500 nsec.
40 ! If a measurement falls outside of these limits, the counter will
50 ! stop measuring and report the out of limits value to the computer
60 ! ASCII format is used to preserve resolution.
70 Lower=5.00E-7 ! Lower limit for period
80 Upper=1.E-6 ! Upper limit for period
90 DIM Result$[22] ! Read out of limit period into Result$
100 ASSIGN @Count TO 703 ! Assign I/O path for the counter
110 CLEAR 703 ! Clear the counter and interface
120 OUTPUT @Count;"*RST" ! Reset the counter
130 OUTPUT @Count;"*CLS" ! Clear event registers and error queue
140 OUTPUT @Count;"*SRE 0" ! Clear service request enable register
150 OUTPUT @Count;"*ESE 0 " ! Clear event status enable register
160 OUTPUT @Count;":STAT:PRES" ! Preset enable registers and
170 ! transition filters for Operation and
180 ! Questionable status structures
190 OUTPUT @Count;":FUNC ""PER 1""" ! Measure period on channel 1
200 ! Note that the function selected must be a quoted string.
210 ! The actual string sent to the counter is "PER 1".
220 !
230 OUTPUT @Count;":FREQ:ARM:STAR:SOUR IMM" ! These two lines enable
240 OUTPUT @Count;":FREQ:ARM:STOP:SOUR IMM" ! Automatic arming.
250 !
260 OUTPUT @Count;":CALC2:LIM:STAT ON" ! Enable limit testing
270 OUTPUT @Count;":CALC2:LIM:DISP GRAP" ! Show the analog limit graph
280 OUTPUT @Count;":CALC2:LIM:LOWER ";Lower ! Set lower limit to 500 ns
290 OUTPUT @Count;":CALC2:LIM:UPPER ";Upper ! Set upper limit to 1 us
300 OUTPUT @Count;":INIT:AUTO ON" ! Stop when out of limit
310 OUTPUT @Count;":STAT:QUES:ENAB 1024" ! 1024 is out of limit bit
320 OUTPUT @Count;"*SRE 8" ! Enable SRQ on questionable
330 ! data register event
340 ON INTR 7 GOTO Out_of_limits ! If SRQ goto out_of_limits
350 ENABLE INTR 7;2 ! Enable the interrupt
360 OUTPUT @Count;":INIT:CONT ON" ! Start making measurements
370 Loop_here:GOTO Loop_here ! Loop while in limits
380 !
390 Out_of_limits: ! Here because SRQ line
400 Status_byte=SPOLL(703) ! asserted Serial poll counter
410 OUTPUT @Count;"FETCH:PERIOD?" ! Query the counter
420 ENTER @Count;Result$! Read the period
430 PRINT "Out of limits measurement is ";Result$;" seconds"
440 PRINT "Status byte is ";Status_byte ! Should be 72 (64+8)
450 LOCAL 703 ! Return counter to local
460 END

To Perform Limit Testing (BASIC)

Programming Your Counter for Remote Operation
Programming Examples

3-65

To Measure the Statistics of 50 Measurements

10 ! This program instructs the counter to take 50 period measurements.
20 ! The counter is put into SINGLE measurement mode. The number of
30 ! measurements to take is programmed using ":CALC3:AVER:COUNT 50"
40 ! The counter is told to stop after 50 measurements using
50 ! ":TRIG:COUNT:AUTO ON"
60 ! At the end of 50 measurements, the statistics are calculated and
70 ! sent to the computer.
80 ! ASCII format is used to preserve resolution.
90 ! In this example, the status reporting structure is used to alert
100 ! the program that the statistics are ready.
110 ! The "*OPC" command and the "*ESE 1 " command are used together
120 ! to generate an output from the Event Status Register when
130 ! the measurement is complete. The output of this register is
140 ! used as an input to the Service Request Register. In order for the
150 ! Service Request Register to be able to use that input, the "*SRE 32"
160 ! command must be used. This enables the Service Request Register to
170 ! assert the SRQ line when the measurement is complete.
180 ! Note, that the *OPC command must be sent prior to every measurement
190 ! in order to enable the OPC bit. See Line # 520.
200 INTEGER I,Num_meas
210 DIM Sdev$[22],Mean$[22],Minimum$[22],Maximum$[22]
220 Num_meas=50 ! Statistics based on Num_meas measurements
230 ASSIGN @Count TO 703
240 CLEAR 703 ! Clear the counter and interface
250 OUTPUT @Count;"*RST" ! Reset the counter
260 OUTPUT @Count;"*CLS" ! Clear event registers and error queue
270 OUTPUT @Count;"*SRE 0 " ! Clear service request enable register
280 OUTPUT @Count;"*ESE 0 " ! Clear event status enable register
290 OUTPUT @Count;":STAT:PRES" ! Preset enable registers and transition
300 ! filters for operation and questionable
310 ! status structures.
320 OUTPUT @Count;":FUNC 'PER 1'" ! Measure Period on channel 1.
330 ! Note that the functions must be
340 ! a quoted string. The actual
350 ! string sent to the counter
360 ! is 'PER 1'.
370 OUTPUT @Count;":FREQ:ARM:STAR:SOUR IMM" ! These three lines enable
380 OUTPUT @Count;":FREQ:ARM:STOP:SOUR TIM" ! time arming with a 0.01
390 OUTPUT @Count;":FREQ:ARM:STOP:TIM .01" ! second gate time.
400 OUTPUT @Count;":DISP:TEXT:FEED 'CALC3'" ! Display statistics
410 OUTPUT @Count;":CALC3:AVER:TYPE SDEV" !Display the standard deviation
420 OUTPUT @Count;":CALC3:AVER ON" ! Enable statistics
430 OUTPUT @Count;":CALC3:AVER:COUNT ";Num_meas ! Do statistics on num_meas
440 ! measurements.
450 OUTPUT @Count;":TRIG:COUNT:AUTO ON " !Take Num_meas measurements
460 OUTPUT @Count;"*ESE 1" ! "*ESE 1" is used so bit 5
470 !of the service request register will allow
480 OUTPUT @Count;"*SRE 32" ! an SRQ when measurement complete.
490 ON INTR 7 GOTO Get_averages ! Goto Get_averages on interrupt.
500 ENABLE INTR 7;2 ! Enable interrupt on counter SRQ.
510 PRINT "Waiting for measurement to complete"
520 OUTPUT @Count;"*OPC;:INIT" ! Enable OPC bit and starts measurement
530 Loop_here:GOTO Loop_here ! Wait here until measurement complete.
540 !

(BASIC)

Programming Your Counter for Remote Operation
Programming Examples

3-66

550 Get_averages: ! Data ready
560 Serial_poll=SPOLL(703)
570 OUTPUT @Count;":CALC3:AVERAGE:TYPE MAX;:CALC3:DATA?"
580 ENTER @Count;Maximum$

To Measure the Statistics of 50 Measurements

590 OUTPUT @Count;":CALC3:AVERAGE:TYPE MIN;:CALC3:DATA?"
600 ENTER @Count;Minimum$
610 OUTPUT @Count;":CALC3:AVERAGE:TYPE MEAN;:CALC3:DATA?"
620 ENTER @Count;Mean$
630 OUTPUT @Count;":CALC3:AVERAGE:TYPE SDEV;:CALC3:DATA?"
640 ENTER @Count;Sdev$
650 PRINT
660 PRINT "Serial Poll = ";Serial_poll ! Should be 96
670 PRINT
680 PRINT USING "21A,22A,X,8A";"Minimum Period = ";Minimum$;" seconds"
690 PRINT USING "21A,22A,X,8A";"Maximum Period = ";Maximum$;" seconds"
700 PRINT USING "21A,22A,X,8A";"Mean Period = ";Mean$;" seconds"
710 PRINT USING "21A,22A,X,8A";"Standard Deviation = ";Sdev$;" seconds"
720 LOCAL 703
730 END

(BASIC) (Continued)

Programming Your Counter for Remote Operation
Programming Examples

3-67

10 ! This program instructs the counter to determine the statistics of
20 ! 50 Period measurements that are within the limits defined by the
30 ! variables "Upper" and "Lower". Periods that are outside of
40 ! the limits are not included in the statistics. The Limit graph is
50 ! displayed so you can see if measurements are in limit.
60 ! To alert the program that the statistics are ready, bit 8 in the
70 ! Operation Status register is used. When statistics are being
80 ! calculated, this bit is high, when they are complete, the bit goes
90 ! low. By using the transition filters, an SRQ can be generated when
100 ! statistics are complete.
110 ! ASCII format is used to preserve resolution.
120 !
130 INTEGER I,Num_meas
140 DIM Sdev$[22],Mean$[22],Minimum$[22],Maximum$[22]
150 Num_meas=50 ! Statistics based on num_meas measurements
160 Upper=1.10E-7 ! Upper period to be included in statistics
170 Lower=1.00E-7 ! Lower period to be included in statistics
180 CLEAR SCREEN
190 ASSIGN @Count TO 703
200 CLEAR 703 ! Clear the counter and interface
210 OUTPUT @Count;"*RST" ! Reset the counter
220 OUTPUT @Count;"*CLS" ! Clear event registers and error queue
230 OUTPUT @Count;"*SRE 0" ! Clear service request enable register
240 OUTPUT @Count;"*ESE 0" ! Clear event status enable register
250 OUTPUT @Count;":STAT:PRES" ! Preset enable registers and transition
260 ! filters for operation and questionable
270 ! status structures.
280 OUTPUT @Count;":FUNC 'PER'" ! Measure frequency on channel 1
290 ! Note that the function must be
300 ! a quoted string. The actual
310 ! string sent to the counter
320 ! is "PER".
330 OUTPUT @Count;":FREQ:ARM:STAR:SOUR IMM" ! These three lines enable
340 OUTPUT @Count;":FREQ:ARM:STOP:SOUR TIM" ! time arming with a 0.01
350 OUTPUT @Count;":FREQ:ARM:STOP:TIM .01" ! second gate time.
360 OUTPUT @Count;":STAT:OPER:ENABLE 256" ! Computing Statistics bit in
370 ! Operation status register
380 OUTPUT @Count;":STAT:OPER:NTR 256" ! When statistics are complete,
390 OUTPUT @Count;":STAT:OPER:PTR 0" ! the bit will go from high to low
400 ! so a negative transition is
410 ! needed to enable the bit that
420 ! is summarized in the Status Byte
430 ! Register.
440 OUTPUT @Count;"*SRE 128" ! This is the bit from the
450 ! Operation Status register that is
460 ! summarized in the Status Byte
470 ! Register.
480 ! When it goes high, SRQ will be
490 ! asserted.
500 OUTPUT @Count;":CALC3:LFIL:STATE ON" ! Enable statistics filter
510 OUTPUT @Count;":CALC3:LFIL:LOWER ";Lower ! Set the lower limit
520 OUTPUT @Count;":CALC3:LFIL:UPPER ";Upper ! Set the upper limit
530 OUTPUT @Count;":CALC3:AVER ON" ! Enable statistics
540 OUTPUT @Count;":CALC3:AVER:COUNT ";Num_meas ! Set number of
550 ! measurements for stats.
560 OUTPUT @Count;":CALC2:LIM:STATE ON" ! Enable limit testing. This

To Use Limits to Filter Data Before Measuring Stats (BASIC)

Programming Your Counter for Remote Operation
Programming Examples

3-68

570 ! must happen in order to

(Continued)
580 ! see the limit graph.
590 OUTPUT @Count;":CALC2:LIM:LOWER ";Lower ! Set the limits lower limit
600 OUTPUT @Count;":CALC2:LIM:UPPER ";Upper ! Set the limits upper limit
610 OUTPUT @Count;":CALC2:LIM:DISP GRAPH" ! Display the limit graph
620 !
630 ON INTR 7 GOTO Stats_ready ! Where to go when statistics ready
640 ENABLE INTR 7;2 ! Enable interrupt on SRQ
650 PRINT "Waiting for measurement to complete"
660 OUTPUT @Count;":INIT:CONT ON" ! Set counter to RUN
670 Loop_here: !WAITING FOR STATISTICS TO COMPLETE
680 GOTO Loop_here
690 !
700 Stats_ready: !Statistics are ready
710 S=SPOLL(703) ! Serial poll to see if correct bit is set.
720 OUTPUT @Count;":INIT:CONT OFF" ! Stop making new measurements
730 OUTPUT @Count;":CALC3:AVERAGE:TYPE MAX;:CALC3:DATA?"
740 ENTER @Count;Maximum$
750 OUTPUT @Count;":CALC3:AVERAGE:TYPE MIN;:CALC3:DATA?"
760 ENTER @Count;Minimum$
770 OUTPUT @Count;":CALC3:AVERAGE:TYPE MEAN;:CALC3:DATA?"
780 ENTER @Count;Mean$
790 OUTPUT @Count;":CALC3:AVERAGE:TYPE SDEV;:CALC3:DATA?"
800 ENTER @Count;Sdev$
810 PRINT
820 PRINT "Serial Poll Result = ";S ! Should be 192
830 PRINT
840 PRINT USING "21A,22A,X,8A";"Minimum Period = ";Minimum$;" seconds"
850 PRINT USING "21A,22A,X,8A";"Maximum Period = ";Maximum$;" seconds"
860 PRINT USING "21A,22A,X,8A";"Mean Period = ";Mean$;" seconds"
870 PRINT USING "21A,22A,X,8A";"Standard Deviation = ";Sdev$;" seconds"
880 LOCAL 703 ! Put counter in local
890 END

To Use Limits to Filter Data Before Measuring Stats (BASIC)

Programming Your Counter for Remote Operation
Programming Examples

3-69

To Read and Store Calibration Information

10 !This program reads the calibration data for the counter into an array.
20 !Before calibrating the counter, it is a good idea to read
30 !and store the current values in case something goes wrong with the
40 !calibration.
50 !In this program, the calibration values are stored in the array cal_data.
60 !Normally, you would store the calibration data on a disk for safe
70 !keeping. The calibration values should only be changed by running the
80 ! calibration diagnostics.
90 !
100 DIM Cal_data$[57] ! Array to hold calibration data
110 DIM Err_string$[255] ! Array to hold error message
120 CLEAR SCREEN
130 ASSIGN @Count TO 703 ! Assign I/O path for Agilent 53181A
140 CLEAR @Count
150 OUTPUT @Count;"*RST" ! Reset the Agilent 53181A
160 OUTPUT @Count;"*CLS" ! Clear event registers and error queue
170 OUTPUT @Count;"*SRE 0" ! Clear service request enable register
180 OUTPUT @Count;"*ESE 0" ! Clear event status enable register
190 OUTPUT @Count;":STAT:PRES" ! Preset enable registers and
200 ! transition filters for operation and
210 ! questionable status structures.
220 OUTPUT @Count;":CAL:DATA?" ! Ask for data
230 ENTER @Count USING "#,4A";Head1$
240 ENTER @Count USING "%,K";Cal_data$
250 PRINT "Calibration data now in array Cal_data"
260 ! You may want to store Cal_data$ and Head1$ on a disk.
270 ! If, at some later point, you need to send the calibration data
280 ! back to the counter, you would use the following command:
290 ! OUTPUT @Count;":CAL:DATA ";Head1$&Cal_data$! Send calibration data
300 ! REPEAT
310 ! OUTPUT @Count;"SYST:ERR?"
320 ! ENTER @Count;Err_num,Err_string$
330 ! IF Err_num<>0 THEN
340 ! PRINT Err_num,Err_string$
350 ! END IF
360 ! UNTIL Err_num=0
370 END

(BASIC)

Programming Your Counter for Remote Operation
Programming Examples

3-70

10 ! This program shows how to set up the counter to transfer data at the
20 ! fastest possible rate. Note that the arming mode is AUTO. This mode
30 ! provides the least resolution of all arming modes.
40 ! The program comments discuss the meaning of each command.
50 ! ASCII result format is to preserve resolution.
60 !
70 CLEAR SCREEN
80 INTEGER I
90 DIM A$(200)[22],Dummy$[22]
100 ASSIGN @Count TO 703
110 CLEAR 703 ! Clear the counter and interface
120 OUTPUT @Count;"*RST" ! Reset the counter
130 OUTPUT @Count;"*CLS" ! Clear event registers and error queue
140 OUTPUT @Count;"*SRE 0" ! Clear service request enable register
150 OUTPUT @Count;"*ESE 0" ! Clear event status enable register
160 OUTPUT @Count;":STAT:PRES" ! Preset enable register and transition
170 ! filters for operation and questionable
180 ! status structures.
190 ! The following lines will provide the highest throughput, regardless
200 ! of the state of the counter before these lines are executed.
210 OUTPUT @Count;":FORMAT ASCII" ! ASCII format for fastest throughput
220 OUTPUT @Count;":FUNC 'FREQ 1'" ! Select frequency
230 OUTPUT @Count;":EVENT1:LEVEL 0" ! Set Ch 1 trigger level to 0 volts
240 OUTPUT @Count;":FREQ:ARM:STAR:SOUR IMM" ! These two lines enable the
250 OUTPUT @Count;":FREQ:ARM:STOP:SOUR IMM" ! AUTO arming mode.
260 OUTPUT @Count;":ROSC:SOUR INT" ! Use internal oscillator. If
270 ! you want to use an external
280 ! timebase, you must select it
290 ! and turn off the automatic
300 ! detection using:
310 ! :ROSC:EXT:CHECK OFF
320 !
330 OUTPUT @Count;":DIAG:CAL:INT:AUTO OFF" ! Disable automatic interpolater
340 ! calibration. The most recent
350 ! calibration values are used in
360 ! the calculation of frequency
370 OUTPUT @Count;":DISP:ENAB OFF" ! Turn off the counter display
380 ! This greatly increases
390 ! measurement throughput.
400 OUTPUT @Count;":CALC:MATH:STATE OFF" ! Disable any post processing.
410 OUTPUT @Count;":CALC2:LIM:STATE OFF"
420 OUTPUT @Count;":CALC3:AVER:STATE OFF"
430 OUTPUT @Count;":HCOPY:CONT OFF" ! Disable any printing operation
440 OUTPUT @Count;"*DDT #15FETC?" ! Define the Trigger command
450 ! This means the command FETC?
460 ! does not need to be sent for
470 ! every measurement, decreasing
480 ! the number of bytes
490 ! transferred over the bus.
500 OUTPUT @Count;":INIT:CONT ON" ! Put counter in Run mode
510 OUTPUT @Count;"FETCH:FREQ?" ! Fetch the frequency to be used
520 ENTER @Count USING "#,K";Dummy$! for the expected frequency.
530 OUTPUT @Count;":FREQ:EXP1 ";VAL(Dummy$)!Tell the counter what frequency
540 ! to expect on Ch 1. This number
550 ! must be within 10% of the input
560 ! frequency. Using this greatly

To Optimize Throughput (BASIC)

Programming Your Counter for Remote Operation
Programming Examples

3-71

570 ! increases throughput. When
580 ! high throughput is not needed,
590 ! the expected value is not

Programming Your Counter for Remote Operation
Programming Examples

3-72

600 ! required.
610 FOR I=1 TO 200
620 TRIGGER @Count ! Trigger the counter and read
630 ENTER @Count;A$(I)
640 NEXT I
650 FOR I=1 TO 10 ! Print first 10 measurements
660 PRINT A$(I),
670 NEXT I
680 END

To Optimize Throughput (BASIC) (Continued)

Programming Your Counter for Remote Operation
Programming Examples

3-73

10 USER 1 KEYS
20 ON KEY 1 LABEL " Macro Free ",1 CALL Macro_free
30 ON KEY 2 LABEL " Enable Macros",1 CALL Macro_enable
40 ON KEY 3 LABEL " Display Macros",1 CALL Display_macros
50 ON KEY 4 LABEL " Macro Query",1 CALL Macro_query
60 ON KEY 5 LABEL " Define Macro",1 CALL Define_macro
70 ON KEY 6 LABEL " Delete Macro",1 CALL Delete_macro
80 ON KEY 7 LABEL " Send Macro",1 CALL Send_macros
90 ON KEY 8 LABEL " Disable Macros",1 CALL Disable_macro
100 Loop_h:GOTO Loop_h
110 END
120 SUB Macro_free ! Display memory available for macros.
130 OUTPUT 703;":MEM:FREE:MACRO?"
140 ENTER 703;Macro_free
150 DISP "Macro memory free = ";Macro_free
160 LOCAL 703
170 SUBEND
180 SUB Macro_enable ! Enable macros. Default is disabled
190 OUTPUT 703;"*EMC 1"
200 DISP "Macros Enabled!"
210 LOCAL 703
220 SUBEND
230 SUB Disable_macro ! Disable macros.
240 OUTPUT 703;"*EMC 0"
250 DISP "Macros Disabled!"
260 SUBEND
270 SUB Display_macros ! Display available macros.
280 CLEAR SCREEN
290 DIM Macros$[6500]
300 OUTPUT 703;"*LMC?"
310 ENTER 703;Macros$
320 PRINT
330 PRINT "The following macros are available:"
340 PRINT
350 PRINT Macros$
360 SUBEND
370 SUB Send_macros ! Send a macro command to the counter.
380 CLEAR SCREEN ! A list of macros to choose from is
390 CALL Display_macros ! shown on the computer.
400 DIM Name$[25],Macro$[200],Send$[255]
410 LINPUT "Enter the name of the macro",Name$
420 IF Name$="" THEN SUBEXIT
430 OUTPUT 703;"*GMC? "&CHR$(39)&Name$&CHR$(39)
440 ENTER 703;Macro$
450 PRINT
460 PRINT "Macro ";Name$;" is defined as follows:"
470 PRINT
480 PRINT Macro$
490 LINPUT "Enter the macro name and commands to be sent",Send$
500 OUTPUT 703;Send$
510 SUBEND
520 SUB Define_macro ! Define a macro for the counter
530 DIM Name$[25],Macro$[200],Send$[255],Header$[2]
540 CLEAR SCREEN
550 LINPUT "Enter the name of the macro",Name$
560 LINPUT "Enter the counter commands",Macro$

To Use Macros (BASIC)

Programming Your Counter for Remote Operation
Programming Examples

3-74

570 Length=LEN(Macro$)
580 Num_char=INT(LGT(Length))+1 ! Determine # of characters for header
590 Header$="#"&VAL$(Num_char)

Programming Your Counter for Remote Operation
Programming Examples

3-75

600 Send$="*DMC "&CHR$(39)&Name$&CHR$(39)&","&Header$&VAL$(Length)&Macro$
610 OUTPUT 703;Send$
620 SUBEND
630 SUB Macro_query ! Ask for the definition of a macro.
640 DIM Name$[25],Macro$[255]
650 CLEAR SCREEN
660 CALL Display_macros
670 LINPUT "Enter the name of the macro you want to see",Name$
680 IF Name$="" THEN SUBEXIT
690 OUTPUT 703;"*GMC? "&CHR$(39)&Name$&CHR$(39)
700 ENTER 703;Macro$
710 PRINT
720 PRINT "Macro ";Name$;" is defined as follows:"
730 PRINT
740 PRINT Macro$[(VAL(Macro$[2,2])+3)] ! Display command portion of macro
750 SUBEND
760 SUB Delete_macro ! Delete a macro.
770 DIM Name$[25]
780 CALL Display_macros
790 LINPUT "Enter the name of the macro you want to delete",Name$
800 IF Name$="" THEN SUBEXIT
810 OUTPUT 703;":MEM:DELETE:MACRO ";CHR$(39)&Name$&CHR$(39)
820 SUBEND

To Use Macros (BASIC) (Continued)

Programming Your Counter for Remote Operation
Programming Examples

3-76

To Make a Frequency Measurement (QuickBASIC)
'This program sets up the counter to make 10 frequency measurements
'on channel 1 using a 0.1 second gate time.
'The results are printed on the computer CRT.
'Data is sent in ASCII format to preseve resolution.
'
'The SUB sendhp sends commands to the counter

DECLARE SUB sendhp (code$)
REM $INCLUDE: 'QBSETUP.BAS' 'Required by Agilent 82335A
DIM SHARED source AS LONG 'Address and select code
DIM i AS INTEGER 'i is used for loops
DIM samples AS INTEGER
samples = 10 'Number of measurements
DIM freqs(10) AS STRING * 23 'String to be read
 'Reading ASCII formatted data
 'gives results to the correct
 'resolution. Must be read into
 'a string. The maximum number
 'of characters that can ever be
 'sent is 20 per measurement.
source& = 703 'Counter at address 3
isc& = 7 'Select code 7
state% = 1 'Used in IOEOI

CLS 'Clear screen
CALL IOEOI(isc&, state%) 'Make sure EOI enabled
CALL IOCLEAR(source&) 'Clear the counter and interface
CALL sendhp("*RST") 'Reset counter
CALL sendhp("*CLS") 'Clear event registers and error queue
CALL sendhp("*SRE 0") 'Clear service request enable register
CALL sendhp("*ESE 0") 'Clear event status enable register
CALL sendhp(":STAT:PRES") 'Preset enable registers and transition
 'filters for operation and questionable
 'status structures
CALL sendhp(":func " + CHR$(34) + "FREQ 1" + CHR$(34)) 'Measure frequency
CALL sendhp(":FREQ:ARM:STAR:SOUR IMM") 'These 3 lines enable using
CALL sendhp(":FREQ:ARM:STOP:SOUR TIM") 'time arming with a 0.1 second
CALL sendhp(":FREQ:ARM:STOP:TIM .1") 'gate time
CLS 'Clear computer screen
FOR i = 1 TO samples
CALL sendhp("READ:FREQ?") 'Initiate a measurement and
 'get the result
CALL IOENTERS(source&, freqs(i), 23, actf%) 'Read the ASCII characters
PRINT "Frequency"; i; "= "; freqs(i)
NEXT i

END

SUB sendhp (code$)
CALL iooutputs(source, code$, LEN(code$))
END SUB

Programming Your Counter for Remote Operation
Programming Examples

3-77

To Perform Limit Testing (QuickBASIC)
'This program sets up the counter to make period measurements
'indefinitely until an out of limits measurement occurs. The upper
'limit is set to 1 us and the lower limit is set to 500 ns.
'If a measurement falls outside of these limits, the counter will
'stop measuring and send the out of limits period to the computer.
'The out of limit period is sent in ASCII format to preserve resolution.
'The SUB sendhp sends commands to the counter

DECLARE SUB sendhp (code$)
REM $INCLUDE: 'QBSETUP.BAS' 'Required by Agilent 82335A
DIM SHARED source AS LONG 'Address and select code

DIM period AS STRING * 23 'Period string, the maximum number
 'of characters that can ever be
 'sent is 23
DIM complete AS INTEGER '
DIM statusbyte AS INTEGER 'Status byte variable
upper = .000001 'Upper period
lower = .0000005 'lower period
source& = 703 'Counter at address 3
isc& = 7 'Select code 7
complete = 0 'Used to check if stats received
state% = 1 'Used in IOEOI
priority% = 1 'Used in IOPEN
CLS 'Clear the screen
CALL IOEOI(isc&, state%) 'Make sure EOI enabled
CALL IOCLEAR(source&) 'Clear the counter and interface
CALL sendhp("*RST") 'Reset counter
CALL sendhp("*CLS") 'clear event registers and error queue
CALL sendhp("*SRE 0") 'clear service request enable register
CALL sendhp("*ESE 0") 'clear event status enable registers
CALL sendhp(":STAT:PRES") 'preset filters for operation and
 'questionable status structures
CALL sendhp(":FUNC " + CHR$(34) + "PER 1" + CHR$(34)) 'Measure period
'The function must be a quoted string. The actual string sent to the
'counter is "PER 1"

CALL sendhp(":FREQ:ARM:STAR:SOUR IMM") 'These 2 lines enable using
CALL sendhp(":FREQ:ARM:STOP:SOUR IMM") 'automatic arming

CALL sendhp(":CALC2:LIM:STAT ON") 'Enable limit testing
CALL sendhp(":CALC2:LIM:DISP GRAP") 'Show the analog limit graph
CALL sendhp(":CALC2:LIM:LOWER " + STR$(lower)) 'Set lower limit
CALL sendhp(":CALC2:LIM:UPPER " + STR$(upper)) 'Set upper limit
CALL sendhp(":INIT:AUTO ON") 'Stop when out of limit
CALL sendhp("*SRE 8") 'Enable SRQ on questionable data
 'register event
CALL sendhp(":STAT:QUES:ENAB 1024") '1024 is out of limit bit

ON PEN GOSUB limitfail 'When SRQ happens, go get out of
PEN ON 'limit result
CALL IOPEN(isc&, priority%)

CALL sendhp(":INIT:CONT ON") 'Set counter to run

PRINT "Making Period measurements"

Programming Your Counter for Remote Operation
Programming Examples

3-78

Loophere: 'Wait here until out of limit
IF complete THEN GOTO endprogram 'If already serviced out of limit
GOTO Loophere 'then end program

To Perform Limit Testing (QuickBASIC) (Continued)
limitfail:
complete = 1 'Test bit
CALL IOSPOLL(source&, statusbyte) 'Check status byte. Should be 72
PRINT "Status byte = ", statusbyte
CALL sendhp("FETCH:PERIOD?") 'Fetch the out of limits period
CALL IOENTERS(source&, period, 23, actf%) 'Read the out of limit period
PRINT "Out of limits period is ", period 'Print results
RETURN

endprogram:
END

SUB sendhp (code$)
CALL iooutputs(source, code$, LEN(code$))
END SUB

Programming Your Counter for Remote Operation
Programming Examples

3-79

To Measure the Statistics of 50 Measurements (QuickBASIC)
'This program instructs the counter to take 50 period measurements
'and return the mean, minimum, maximum and standard deviation.
'The counter is put into SINGLE measurement mode.
'The number of measurements is programmed using ":CALC3:AVER:COUNT 50"
'The counter is set up to take 50 measurments and then stop
'using the ":TRIG:COUNT:AUTO ON" command.
'At the end of the 50 measurements, the statistics are sent to the
'computer. The data is sent in ASCII format to preserve resolution.
'
'When the program has completed, the statistics will be displayed on
'the computer and the standard deviation will be displayed on the
'counter
'
'In this example, the status reporting structure is used to alert the
'program that the statistics are ready.
'The "*OPC" and "*ESE 1" command are used together to generate an output
'from the Event Status Register when the measurement is complete. The
'output of this register is summarized in the Status Byte Register
'In order for the Service Request Register to summarize that input
'the "*SRE 128" command must be used. This enables the Service
'Request Register to assert the SRQ line when the measurement is complete.
'Note that the *OPC command must be sent at the start of every measurement.
'
'The SUB sendhp sends commands to the counter

DECLARE SUB sendhp (code$)
REM $INCLUDE: 'QBSETUP.BAS' 'Required by Agilent 82335A
DIM SHARED source AS LONG 'Address and select code
DIM samples AS INTEGER 'Number of measurements
DIM maximum AS STRING * 23 'Strings for statistics
DIM minimum AS STRING * 23 'The maximum number of characters that
DIM mean AS STRING * 23 'can ever be sent is 23
DIM sdev AS STRING * 23
maxelem% = 23 'Maximum number of characters expected
actual% = 0 'Returns actual characters received
samples = 50 'Number of statistics measurements
source = 703 'Counter at address 3
isc& = 7 'Select code 7
state% = 1 'Used in IOEOI
priority% = 1 'Used in IOPEN

CLS
CALL IOEOI(isc&, state%) 'Make sure EOI enabled
CALL IOCLEAR(source&) 'Reset the counter and interface
CALL sendhp("*RST") 'Reset the counter
CALL sendhp("*CLS") 'Clear event registers and error queue
CALL sendhp("*SRE 0") 'Clear service request enable register
CALL sendhp("*ESE 0") 'Clear event status enable register
CALL sendhp(":STAT:PRES") 'Preset enable registers and transition
 'filters for operation and questionable
 'status structures.
CALL sendhp(":FUNC " + CHR$(34) + "PER 1" + CHR$(34)) 'Measure Period

'The function must be a quoted string. The actual string sent to the
'counter is "PER 1"

Programming Your Counter for Remote Operation
Programming Examples

3-80

CALL sendhp(":FREQ:ARM:STAR:SOUR IMM") 'These 3 lines enable using
CALL sendhp(":FREQ:ARM:STOP:SOUR TIM") 'time arming with a 0.01 second

To Measure the Statistics of 50 Measurements (QuickBASIC)
(Continued)

CALL sendhp(":FREQ:ARM:STOP:TIM .01") 'gate time

CALL sendhp(":DISP:TEXT:FEED " + CHR$(34) + "CALC3" + CHR$(34)) 'Display stats
CALL sendhp(":CALC3:AVER:TYPE SDEV") 'Display the standard deviation
CALL sendhp(":CALC3:AVER ON") 'Enable statistics
CALL sendhp(":CALC3:AVER:COUNT " + STR$(samples)) 'Do stats on samples
CALL sendhp(":TRIG:COUNT:AUTO ON") 'Take samples measurements
CALL sendhp("*ESE 1") '"*ESE 1" is used so the
 'correct bit is summarized
CALL sendhp("*SRE 32") 'in the Status Byte Register
 'when the measurement is complete
PRINT "Waiting for measurement to complete"
ON PEN GOSUB statsready 'Wait for interrupt
PEN ON
CALL IOPEN(isc&, priorty%)

CALL sendhp("*OPC;:INIT") 'Enable OPC bit and start meas

loophere:
IF complete THEN GOTO endprogram 'Wait here, if already made
GOTO loophere 'stats measurements, then goto
 'endprogram.

statsready: 'Ready to read statistics

CALL sendhp(":CALC3:AVERAGE:TYPE MIN;:CALC3:DATA?") 'Read them individually
CALL IOENTERS(source&, minimum, maxelem%, actual%)
CALL sendhp(":CALC3:AVERAGE:TYPE MAX;:CALC3:DATA?")
CALL IOENTERS(source&, maximum, maxelem%, actual%)
CALL sendhp(":CALC3:AVERAGE:TYPE MEAN;:CALC3:DATA?")
CALL IOENTERS(source&, mean, maxelem%, actual%)
CALL sendhp(":CALC3:AVERAGE:TYPE SDEV;:CALC3:DATA?")
CALL IOENTERS(source&, sdev, maxelem%, actual%)
PRINT
PRINT "Minimum Period = ", minimum
PRINT "Maximum Period = ", maximum
PRINT "Mean Period = ", mean
PRINT "Standard Deviation = ", sdev
complete = 1
RETURN

endprogram: 'All done!

SUB sendhp (code$)
CALL iooutputs(source, code$, LEN(code$))
END SUB

Programming Your Counter for Remote Operation
Programming Examples

3-81

To Use Limits to Filter Data Before Measuring Stats
(QuickBASIC)

'This program sets up the counter to determine the statistics of
'50 period measurements that are within limits defined by the variables
''UPPER' and 'LOWER'. Periods that are outside of the limits are not
'included in the statistics. The Limit graph is displayed so you can see if
'measurements are in limit.
'To alert the program that the statistics are ready, bit 8 in the Operation
'Status register is used. When statistics are being calculated, this bit
'is high, when they are complete, the bit goes low. By using the transition
'filters, an SRQ can be generated when statistics are complete.

'The SUB sendhp sends commands to the counter

DECLARE SUB sendhp (code$)
REM $INCLUDE: 'QBSETUP.BAS' 'Required by Agilent 82335A
DIM SHARED source AS LONG 'Address and select code
DIM status AS INTEGER 'Status byte variable
DIM complete AS INTEGER 'Variable used in the program
DIM statusbyte AS INTEGER 'Status Byte variable
DIM maximum AS STRING * 23 'Strings used to enter stats
DIM minimum AS STRING * 23
DIM mean AS STRING * 23
DIM sdev AS STRING * 23
DIM nummeas AS INTEGER 'Number of measurements
DIM lower AS SINGLE 'Lower limit
DIM upper AS SINGLE 'Upper limit
nummeas = 50 'Number of statistics measurements
lower = .0000005 'Limit values
upper = .000001
actual% = 0 'Used in IOENTERS
maxelem% = 23 'Used in IOENTERS
source& = 703 'Counter at address 3
isc& = 7 'Select code 7
complete = 0 'Used to check if stats received
state% = 1 'Used in IOEOI
priority% = 1 'Used in IOPEN
CLS
CALL IOEOI(isc&, state%) 'Make sure EOI enabled
CALL IOCLEAR(source&) 'Reset counter and interface
CALL sendhp("*RST") 'Reset counter
CALL sendhp("*CLS") 'Clear event registers and error queue
CALL sendhp("*SRE 0") 'Clear service request enable register
CALL sendhp("*ESE 0") 'Clear event status enable registers
CALL sendhp(":STAT:PRES") 'Preset filters for Operation and
 'Questionable Status structures
CALL sendhp(":FUNC " + CHR$(34) + "PER 1" + CHR$(34)) 'Measure period
'The function must be a quoted string. The actual string sent to the
'counter is "PER 1"

CALL sendhp(":FREQ:ARM:STAR:SOUR IMM") 'These 3 lines enable time
CALL sendhp(":FREQ:ARM:STOP:SOUR TIM") 'arming with a 0.01 second
CALL sendhp(":FREQ:ARM:STOP:TIM .01") 'gate time.

CALL sendhp(":STAT:OPER:ENABLE 256") 'Computing statistics bit in
 'Operation Status Register.

Programming Your Counter for Remote Operation
Programming Examples

3-82

CALL sendhp(":STAT:OPER:NTR 256") 'When stats are complete, the bit
CALL sendhp(":STAT:OPER:PTR 0") 'will go from high to low, so a
 'negative transition is needed to

Programming Your Counter for Remote Operation
Programming Examples

3-83

To Use Limits to Filter Data Before Measuring Stats
(QuickBASIC) (Continued)

 'enable the bit that is summarized
 'in the Status Byte Register.
CALL sendhp("*SRE 128") 'This is the bit from the Operation
 'Status register that is summarized
 'in the Status Byte Register. When
 'it goes high, SRQ will be asserted.

CALL sendhp(":CALC3:LFIL:STATE ON") 'Enable statistics filter
CALL sendhp(":CALC3:LFIL:LOWER " + STR$(lower)) 'Set lower stats limit
CALL sendhp(":CALC3:LFIL:UPPER " + STR$(upper)) 'Set upper stats limit
CALL sendhp(":CALC3:AVER ON") 'Enable statistics
CALL sendhp(":CALC3:AVER:COUNT " + STR$(nummeas))'Set number of measurements
 'to use in statistics
 'calculation

CALL sendhp(":CALC2:LIM:STATE ON") 'Enable limit testing. Must
 'do this to see graph
CALL sendhp(":CALC2:LIM:LOWER " + STR$(lower)) 'Set lower limit
CALL sendhp(":CALC2:LIM:UPPER " + STR$(upper)) 'Set upper limit
CALL sendhp(":CALC2:LIM:DISP GRAPH") 'Display limit graph

ON PEN GOSUB getstats 'When SRQ happens, go get
PEN ON 'statistics
CALL IOPEN(isc&, priority%) 'Watch for interrupts
PRINT "Making Period measurements"
CALL sendhp(":INIT:CONT ON") 'Set counter to run

Loophere: 'Wait here until complete
IF complete THEN GOTO endprogram 'If stats received, then end
GOTO Loophere

getstats:
complete = 1 'Test bit
CALL IOSPOLL(source&, statusbyte) 'Check status byte
 'Should be 192
CALL sendhp(":INIT:CONT OFF") 'Put counter in single
PRINT "Status byte = ", statusbyte
CALL sendhp(":CALC3:AVERAGE:TYPE MIN;:CALC3:DATA?") 'Ask for all the stats
CALL IOENTERS(source&, minimum, maxelem%, actual%)
CALL sendhp(":CALC3:AVERAGE:TYPE MAX;:CALC3:DATA?")
CALL IOENTERS(source&, maximum, maxelem%, actual%)
CALL sendhp(":CALC3:AVERAGE:TYPE MEAN;:CALC3:DATA?")
CALL IOENTERS(source&, mean, maxelem%, actual%)
CALL sendhp(":CALC3:AVERAGE:TYPE SDEV;:CALC3:DATA?")
CALL IOENTERS(source&, sdev, maxelem%, actual%)
PRINT
PRINT "Minimum Period = ", minimum
PRINT "Maximum Period = ", maximum
PRINT "Mean Period = ", mean
PRINT "Standard Deviation = ", sdev
RETURN

endprogram:
END

Programming Your Counter for Remote Operation
Programming Examples

3-84

SUB sendhp (code$)
CALL iooutputs(source, code$, LEN(code$))
END SUB

Programming Your Counter for Remote Operation
Programming Examples

3-85

To Read and Store Calibration Data (QuickBASIC)
'Before calibrating the counter, it is a good idea to read
'and store the current calibration values in case something goes wrong with
'the calibration.
'This program reads the cal values, and stores them in a file on the computer
'hard drive. It then reads the data from the file and sends it back to
'the counter.
'The SUB sendhp sends commands to the counter

DECLARE SUB sendhp (code$)
REM $INCLUDE: 'QBSETUP.BAS' 'Required by Agilent 82335A
DIM SHARED source AS LONG 'Address and select code
DIM CALDATA AS STRING * 61 'Strings to be read
source& = 703 'Counter at address 3
isc& = 7 'Select code 7
state% = 1

CLS 0
CALL IOEOI(isc&, state%) 'Make sure EOI enabled
CALL IOCLEAR(source&) 'Clear the counter and interface
CALL sendhp("*RST") 'Reset Agilent counter
CALL sendhp("*CLS") 'Clear event registers and error queue
CALL sendhp("*SRE 0") 'Clear service request enable register
CALL sendhp("*ESE 0") 'Clear event status enable register
CALL sendhp(":STAT:PRES") 'Preset enable registers and transition
 'filters for operation and questionable
 'status structures.
PRINT "Reading Calibration Data"
CALL sendhp(":CAL:DATA?")
CALL ioenters(source&, CALDATA, 61, actf%) 'Read the ASCII characters

OPEN "CALDATA.DAT" FOR BINARY AS #1 'Store the cal data in a file
PUT #1, 1, CALDATA
CLOSE #1

'The following lines show how to open a file with calibration data
'and send it back to the counter.
PRINT
PRINT "Sending calibration data to counter"
OPEN "CALDATA.DAT" FOR BINARY AS #1
GET #1, 1, CALDATA
CLOSE #1
CALL sendhp(":CAL:DATA " + CALDATA) 'Send the data just read to counter
END

SUB sendhp (code$)
CALL iooutputs(source, code$, LEN(code$))
END SUB

Programming Your Counter for Remote Operation
Programming Examples

3-86

To Optimize Throughput (QuickBASIC)
'This program sets up the counter make 1000 frequency as fast as possible.
'Note that the arming is set to AUTO. This allows measurements to be taken
'quickly, but at the least resolution the counter can provide.
'See the program comments for details.
'Requires an Agilent 82335A/B GPIB interface card to a PC.
'The data is sent in ASCII format to preserve resolution.
'
'The SUB sendhp sends commands to the counter

DECLARE SUB sendhp (code$)
REM $INCLUDE: 'QBSETUP.BAS' 'Required by Agilent 82335A
DIM SHARED source AS LONG 'Address and select code
DIM i AS INTEGER 'i is used for loops
DIM samples AS INTEGER
samples = 1000 'Number of measurements
DIM freqstring(1000) AS STRING * 23 'String to be read
 'Reading ASCII formatted data
 'gives results to the correct
 'resolution. Must be read into
 'a string. Also, provides the
 'fastest data transfer.
maxelem% = 22 'Maximum number of characters expected
actual% = 0 'Returns actual characters received
source& = 703 'Counter at address 3
isc& = 7 'Select code 7
state% = 1 'Used in IOEOI

CLS 0
CALL IOEOI(isc&, state%) 'Make sure EOI enabled
CALL IOCLEAR(source&) 'Clear the counter and interface
CALL sendhp("*RST") 'Reset counter
CALL sendhp("*CLS") 'Clear event registers and error queue
CALL sendhp("*SRE 0") 'Clear service request enable register
CALL sendhp("*ESE 0") 'Clear event status enable register
CALL sendhp(":STAT:PRES") 'Preset enable registers and transition
 'filters for operation and questionable
 'status structures
'The following commands will provide the fastest measurement throughput,
'independent of the state of the counter prior to these commands.
CALL sendhp(":FORMAT ASCII") 'ASCII give fastest throughput
CALL sendhp(":FUNC " + CHR$(34) + "FREQ 1" + CHR$(34)) 'Measure frequency
'The function must be a quoted string. The actual string sent to the
'counter is "FREQ 1"
'The following lines will provide the fastest throughput, regardless of
'the state of the counter before these lines are executed.
CALL sendhp(":FREQ:ARM:STAR:SOUR IMM") 'These 3 lines enable using
CALL sendhp(":FREQ:ARM:STOP:SOUR IMM") 'time arming with a 0.1 second
CALL sendhp(":EVENT1:LEVEL 0") 'Set trigger level on channel 1
 'This also disables auto trigger
CALL sendhp(":CALC:MATH:STATE OFF") 'Make sure all post-processing
CALL sendhp(":CALC2:LIM:STATE OFF") 'is turned off.
CALL sendhp(":CALC3:AVER:STATE OFF")
CALL sendhp(":HCOPY:CONT OFF") 'Do not update printing operations
CALL sendhp(":ROSC:SOUR INT")
CALL sendhp(":ROSC:EXT:CHECK OFF")
CALL sendhp(":DIAG:CAL:INT:AUTO OFF") 'Disable automatic interpolator

Programming Your Counter for Remote Operation
Programming Examples

3-87

 'calibration. The most recent
 'calibration factors will be
 'used in the calculation for
 'frequency

To Optimize Throughput (QuickBASIC) (Continued)
CALL sendhp("*DDT #15FETC?") 'Define trigger as fetc?
CALL sendhp(":DISP:ENABLE OFF") 'Turn off the display
CALL sendhp("READ:FREQUENCY?") 'Read the expected frequency
CALL IOENTERS(source&, freqstring(1), maxelem%, actual%)
CALL sendhp(":FREQ:EXP1 " + freqstring(1)) 'Send the expected frequency
CALL sendhp(":INIT:CONT ON") 'Start making measurements
PRINT "Making measurements"

FOR i = 1 TO samples
CALL IOTRIGGER(source) 'Query the counter for data
CALL IOENTERS(source&, freqstring(i), 22, actual%) 'Read the ASCII characters
NEXT i

PRINT "Measurements complete"

END

SUB sendhp (code$)
CALL iooutputs(source, code$, LEN(code$))
END SUB

Programming Your Counter for Remote Operation
Programming Examples

3-88

To Use Macros (QuickBASIC)
'This program is useful for writing macros for the counter. Softkeys
'are available at the bottom of the computer screen to help determine
'the status of the macros.
'The SUB sendhp sends commands to the Agilent 53181A

DECLARE SUB sendhp (code$)
REM $INCLUDE: 'QBSETUP.BAS' 'Required by Agilent 82335A
DIM SHARED source AS LONG 'Address and select code
DIM maxlength AS INTEGER
DIM actual AS INTEGER
DIM length AS INTEGER
maxlength = 6400
DIM answer AS STRING
DIM namemacro AS STRING
DIM commandmacro AS STRING
DIM results AS STRING * 6400
DIM macros AS STRING
source = 703 'Agilent 53181A at address 3
isc& = 7 'Select code 7
state% = 1

CLS
CALL IOEOI(isc&, state%) 'Make sure EOI enabled
CALL sendhp("*RST") 'Reset the counter
CALL sendhp("*CLS") 'Clear event registers and error queue
CALL sendhp("*SRE 0") 'Clear service request enable register
CALL sendhp("*ESE 0") 'Clear event status enable register
CALL sendhp(":STAT:PRES") 'Preset enable registers and transition
 'filters for operation and questionable
 'status structures.

CALL sendhp(":INIT:CONT OFF") 'Put counter in Single

KEY 1, "Free"
KEY 2, "Enable"
KEY 3, "Display"
KEY 4, "Query"
KEY 5, "Define"
KEY 6, "Delete1"
KEY 7, "Purge"
KEY 8, "Disable"
KEY 9, "Send"
KEY 10, "QUIT"
FOR i = 1 TO 10
KEY(i) ON
NEXT i

KEY ON
ON KEY(1) GOSUB availablememory
ON KEY(2) GOSUB enablemacro
ON KEY(3) GOSUB displaymacro
ON KEY(4) GOSUB querymacro
ON KEY(5) GOSUB definemacro
ON KEY(6) GOSUB deletemacro
ON KEY(7) GOSUB purgemacro
ON KEY(8) GOSUB disablemacro

Programming Your Counter for Remote Operation
Programming Examples

3-89

ON KEY(9) GOSUB sendmacro
ON KEY(10) GOSUB quit
loophere: GOTO loophere 'Wait for function key to be pressed

To Use Macros (QuickBASIC) (Continued)
availablememory: 'Display available macro memory
CALL sendhp(":MEM:FREE:MACRO?")
CALL IOENTER(source&, freemacro)
PRINT "Available macro memory = "; freemacro
RETURN

enablemacro: 'Enable all macros
sendhp ("*EMC 1")
PRINT "Macros Enabled"
RETURN

displaymacro: 'Display macros available in counter
CLS
sendhp ("*LMC?")
CALL IOENTERS(source, results$, maxlength, actual)
macros$ = LEFT$(results$, actual)
PRINT "The following macros are available:"
PRINT macros$
RETURN

querymacro: 'Ask for definition of a macro
CLS
GOSUB displaymacro
INPUT "Enter the name of the macro you want to see ", namemacro$
IF namemacro$ = "" THEN RETURN
sendhp ("*GMC? " + CHR$(39) + namemacro$ + CHR$(39))
CALL IOENTERS(source, results, maxlength, actual)
macroname$ = LEFT$(results, actual)
PRINT namemacro$; " is defined as:"
PRINT macroname$
RETURN

deletemacro: 'Delete a macro
GOSUB displaymacro
INPUT "Enter the name of the macro you want to delete ", namemacro$
IF namemacro$ = "" THEN RETURN
sendhp ("MEM:DELETE:MACRO " + CHR$(39) + namemacro$ + CHR$(39))
RETURN

purgemacro: 'Purge all macros
INPUT "Are you sure you want to purge all macros? ", answer$
answer$ = UCASE$(answer$)
IF answer$ = "Y" THEN
sendhp ("*PMC")
PRINT "All macros purged"
END IF
RETURN

disablemacro: 'Disable macros, but do not purge
sendhp ("*EMC 0")
PRINT ("Macros Disabled")

Programming Your Counter for Remote Operation
Programming Examples

3-90

RETURN

sendmacro:
CLS
GOSUB displaymacro
INPUT "Enter the name of the macro to send ", namemacro$
IF namemacro$ = "" THEN RETURN
sendhp (namemacro$)
RETURN

To Use Macros (QuickBASIC) (Continued)
definemacro: 'Define a macro
CLS
INPUT "Enter the name of the macro to be defined ", namemacro$
INPUT "Enter the commands to be sent ", commandmacro$
length = LEN(commandmacro$)
numchar = INT(LOG(length) / LOG(10#)) + 1
header$ = "#" + LTRIM$(STR$(numchar))
PRINT header$
macrocommand$ = header$ + LTRIM$(STR$(length)) + commandmacro$
code$ = "*DMC " + CHR$(39) + namemacro$ + CHR$(39) + "," + macrocommand$
PRINT code$
CALL iooutputs(source, code$, LEN(code$))
RETURN

quit:
PRINT "End of Program"
STOP
RETURN

SUB sendhp (code$)
CALL iooutputs(source, code$, LEN(code$))
END SUB

Programming Your Counter for Remote Operation
Programming Examples

3-91

To Make a Frequency Measurement (Turbo C)
/* This program sets up the counter to make 10 freqeuncy measurements
 on channel 1, using a 0.1 second gate time.
 The results are displayed on the computer CRT
 The program comments discuss the meaning of each command.
 ASCII result format is used to preserve resolution. */

#include <stdio.h>
#include <string.h>
#include "CHPIB.H"
#include "CFUNC.H"

void sendhp(char *); /* function to send command to counter */

/* global data */

long ctr=703; /* Counter is at address 03. GPIB is at select code 7
*/
int error;

void main()
{ long isc=7; /* Select code 7 */
 int state=1; /* Used in IOEOI */
 int i; /* Used for loop counter */
 int samples=10; /* Number of measurements to take */
 int length=23; /* Max number of bytes per measurements */
 char freq[23]; /* Array to hold frequency string */
 IORESET(isc); /* Clear the GPIB interface */
 sendhp("*RST"); /* Reset the counter */
 sendhp("*CLS"); /* Clear event registers and error queue */
 sendhp("*SRE 0"); /* Clear service request enable register */
 sendhp("*ESE 0"); /* Clear event status enable register */
 sendhp(":STAT:PRES"); /* Preset enable registers and transition
 filters for operation and questionable
 status structures */
 IOEOI(isc,state); /* Enable use of EOI */

 sendhp(":FUNC 'FREQ 1'"); /* Measure frequency on channel 1
 Note that the function must
 be a quoted string. The actual
 string sent to the counter is
 'FREQ 1'. */
 sendhp(":FREQ:ARM:STAR:SOUR IMM"); /* These 3 lines enable the */
 sendhp(":FREQ:ARM:STOP:SOUR TIM"); /* time arming mode with a */
 sendhp(":FREQ:ARM:STOP:TIM .1"); /* 0.1 second gate time */

 for (i=1; i<=samples ;i++)
 {
 sendhp("INIT"); /* Start a measurement */
 snedhp("FETCH:FREQUENCY?");
 IOENTERS(ctr,freq,&length); /* fetch the data */
 length=strlen(freq); /* Get length of result so */
 freq[length-1]='\0'; /* the linefeed can be removed */
 printf ("Frequency %d = %s Hz\n",i,freq);
 }
 printf("Press a key to continue\n");
 getch();

Programming Your Counter for Remote Operation
Programming Examples

3-92

}

Programming Your Counter for Remote Operation
Programming Examples

3-93

To Make a Frequency Measurement (Turbo C) (Continued)
/* Function to send command to Agilent 53181A */

void sendhp(hpib_cmd)
char *hpib_cmd;
{

char hpcmd[80]; /* Variables used by function */
int length;
strcpy(hpcmd,hpib_cmd);
length=strlen(hpcmd);
error=IOOUTPUTS(ctr,hpcmd,length); /* Send command to Agilent 53181A */
if (error!=0)
printf("Error during GPIB: %d Command %s\n",error,hpcmd);

}

Programming Your Counter for Remote Operation
Programming Examples

3-94

To Use Limits to Filter Data Before Measuring Statistics (Turbo
C)

/* This program instructs the counter to determine the statistics of
 50 Period measurements that are within programmed test limit values.
 Periods that are outside of the limits are not included in the statistics.
 The Limit graph is displayed so you can see if measurements are in limit.
 To alert the program that the statistics are ready, bit 8 in the Operation
 Status Register is used. When statistics are being calculated, this bit is
 high, when they are complete, this bit goes low. By using the transition
 filters, an SRQ can be generated when statistics are complete (the
 transition from high to low of bit 8 in the Operation Status register.)*/

#include <stdio.h> /* used for printf() */
#include <dos.h> /* used for delay() */

#include "CHPIB.H" /* GPIB library constant declarations */
#include "CFUNC.H" /* GPIB library function prototypes */

void sendhp(char *); /* function to send command to counter */

/* global data */

long ctr=703; /* Counter is at address 03. GPIB is at select code 7 */
int error;

void main()
{
 long isc=7; /* Select code 7 */
 int condition=1; /* Used in IOSTATUS */
 int status; /* Used in IOSTATUS */
 int state=1; /* Used in IOEOI */
 char mean[23]; /* mean variable */
 char minimum[23]; /* minimum variable */
 char maximum[23]; /* maximum variable */
 char sdev[23]; /* standard deviation variable */
 int length=23; /* Used in IOENTERS */
 clrscr(); /* Clear the computer CRT */

 IORESET(isc); /* Clear the GPIB interface */
 sendhp("*RST"); /* Reset the counter */
 sendhp("*CLS"); /* Clear event registers and error queue */
 sendhp("*SRE 0"); /* Clear service request enable register */
 sendhp("*ESE 0"); /* Clear event status enable register */
 sendhp(":STAT:PRES"); /* Preset enable registers and transition
 filters for operation and questionable
 status structures */
 IOEOI(isc,state); /* Enable use of EOI */
 sendhp(":FUNC 'FREQ 1'"); /* Make a frequency measurement */
 sendhp(":FREQ:ARM:STAR:SOUR IMM"); /* These 3 lines enable */
 sendhp(":FREQ:ARM:STOP:SOUR TIM"); /* time arming with a .001 */
 sendhp(":FREQ:ARM:STOP:TIM .001"); /* second gate time */
 sendhp(":STAT:OPER:ENABLE 256"); /* Computing statistics bit in
 Operation Status register */
 sendhp(":STAT:OPER:NTR 256"); /* When statistics are complete, */
 sendhp(":STAT:OPER:PTR 0"); /* the bit will go from high to low

Programming Your Counter for Remote Operation
Programming Examples

3-95

 so a negative transition is
 needed to enable the bit that is
 summarized in the Status Byte
 register. */

To Use Limits to Filter Data Before Measuring Statistics (Turbo
C) (Continued)

 sendhp("*SRE 128"); /* This is the bit from the Operation
 Status register that is summarized
 in the Status Byte Register */
 sendhp(":CALC3:LFIL:STAT ON"); /* Enable statistics filter */
 sendhp(":CALC3:LFIL:LOWER 1 MHz"); /* Set lower limit to 1 MHz */
 sendhp(":CALC3:LFIL:UPPER 2 MHz"); /* Set upper limit to 2 MHz */
 sendhp(":CALC3:AVER ON"); /* Enable statistics */
 sendhp(":CALC3:AVER:COUNT 50"); /* Use 50 measurements for stats */

 sendhp(":CALC2:LIM:STAT ON"); /* Enable limit testing. This must
 happen in order to see limit
 graph */
 sendhp(":CALC2:LIM:LOWER 1 MHz"); /* Set lower limit */
 sendhp(":CALC2:LIM:UPPER 2 MHz"); /* Set upper limit */
 sendhp(":CALC2:LIM:DISP GRAPH"); /* Display limit graph */

 /* Waiting for the measurement to complete */

 printf("Waiting for measurement to complete\n");
 sendhp(":INIT:CONT ON"); /* Start making measurements */
 do
 {
 IOSTATUS(isc,condition,&status); /* Check status byte */
 delay(200); /* Wait 200 milliseconds */
 }
 while (status!=1); /* if =1 then measurement complete */

 /* Measurement is complete, get the data */

 IOSPOLL(ctr,&status); /* Serial poll counter for status */
 puts("Transferring and processing data");
 sendhp(":INIT:CONT OFF"); /* Set counter to Single */
 sendhp(":CALC3:AVERAGE:TYPE MIN;:CALC3:DATA?");
 IOENTERS(ctr,minimum,&length); /* Get the data from the counter */
 sendhp(":CALC3:AVERAGE:TYPE MAX;:CALC3:DATA?");
 IOENTERS(ctr,maximum,&length); /* Get the data from the counter */
 sendhp(":CALC3:AVERAGE:TYPE MEAN;:CALC3:DATA?");
 IOENTERS(ctr,mean,&length); /* Get the data from the counter */
 sendhp(":CALC3:AVERAGE:TYPE SDEV;:CALC3:DATA?");
 IOENTERS(ctr,sdev,&length); /* Get the data from the counter */

 printf("Mean frequency = %s",mean);
 printf("Minimum frequency = %s",minimum);
 printf("Maximum frequency = %s",maximum);
 printf("Standard deviation = %s",sdev);
 printf("Press a key to continue\n");
 getch();

}

Programming Your Counter for Remote Operation
Programming Examples

3-96

/* Function to send command to Agilent 53131A */

void sendhp(hpib)
char *hpib_cmd;
{

To Use Limits to Filter Data Before Measuring Statistics (Turbo
C) (Continued)

char hpcmd[80]; /* Variables used by function */
int length;
strcpy(hpcmd,hpib_cmd);
length=strlen(hpcmd);
error=IOOUTPUTS(ctr,hpcmd,length); /* Send command to Agilent 53181A */
if (error!=0)
printf("Error during GPIB: %d Command %s\n",error,hpcmd);

}

Programming Your Counter for Remote Operation
Programming Examples

3-97

To Optimize Throughput (Turbo C)
/* This program sets up the counter to transfer data at the fastest
 possible rate. Note that the arming mode is AUTO. This mode provides
 the least resolution of all the arming modes.
 The program comments discuss the meaning of each command.
 ASCII result format is used to preserve resolution.
 For optimal performance, compile for best speed. */

#include <stdio.h> /* used for printf() */
#include <string.h> /* used for strlen() */
#include "CHPIB.H" /* GPIB library constant declarations */
#include "CFUNC.H" /* GPIB library function prototypes */

void sendhp(char *); /* function to send command to counter */

/* global data */

long ctr=703; /* Counter is at address 03. GPIB is at select code 7 */
int error;

void main()
{
 long isc=7; /* Select code 7 */
 int status; /* Used in IOSTATUS */
 int state=1; /* Used in IOEOI */
 int i; /* Used for loop counter */
 float exp_freq; /* Expected frequency value */
 int readings = 1000; /* Number of measurements to take */
 int length=23; /* Max number of bytes per measurement */
 char freq[1001][23]; /* Array to hold measurements */
 char destination[130]; /* Used for expected frequency */
 IORESET(isc); /* Clear the GPIB interface */
 sendhp("*RST"); /* Reset the counter */
 sendhp("*CLS"); /* Clear event registers and error queue */
 sendhp("*SRE 0"); /* Clear service request enable register */
 sendhp("*ESE 0"); /* Clear event status enable register */
 sendhp(":STAT:PRES"); /* Preset enable registers and transition
 filters for operation and questionable
 status structures */
 IOEOI(isc,state); /* Enable use of EOI */

 sendhp(":FUNC 'FREQ 1'"); /* Make a frequency measurement */
 sendhp(":FREQ:ARM:STAR:SOUR IMM"); /* These 2 lines enable the */
 sendhp(":FREQ:ARM:STOP:SOUR IMM"); /* AUTO arming mode*/
 sendhp(":EVENT1:LEVEL 0"); /* Set a trigger level for
 channel 1. This disables the
 auto trigger, increasing
 throughput */
 sendhp(":ROSC:SOURCE INT"); /* Use internal oscillator. If
 you want to use an external
 timebase, you must select it
 and turn off the automatic
 detection using:
 :ROSC:EXT:CHECK OFF */
 sendhp(":DIAG:CAL:INT:AUTO OFF"); /* Disable automatic interpolater
 calibration. The most recent

Programming Your Counter for Remote Operation
Programming Examples

3-98

 calibration values are used in
 the calculation of frequency */

Programming Your Counter for Remote Operation
Programming Examples

3-99

To Optimize Throughput (Turbo C) (Continued)
 sendhp(":DISP:ENABLE OFF"); /* Turn off the counter display */
 sendhp(":HCOPY:CONT OFF");
 sendhp(":CALC:MATH:STATE OFF"); /* Disable any post processing */
 sendhp(":CALC2:LIM:STATE OFF");
 sendhp(":CALC3:AVER:STATE OFF");
 sendhp("*DDT #15FETC?"); /* Define the Trigger command. This
 means the command FETC? does not
 need to be sent for every
 measurement, decreasing the
 number of bytes transferred over
 the bus */
 sendhp(":INIT:CONT ON"); /* Put the counter in Run mode */
 sendhp("FETCH:FREQ?"); /* Fetch the frequency to be */
 IOENTER(ctr,&exp_freq); /* for the expected frequency */
 strcpy(destination,":FREQ:EXP1 "); /* Copy string */
 sprintf(&destination[strlen(destination)],"%e",exp_freq); /* Append
 expected frequency value */
 sendhp(destination); /* Send the expected frequency */
 /* This number must be within 10%
 of the Ch 1 input frequency.
 Using this greatly increases
 throughput, but is not
 recommended for signals that
 change by more than 10% */
 puts("Transferring and processing data\n");
 for (i=1; i<=readings ;i++)
{
 IOTRIGGER(ctr); /* Trigger the counter and */
 IOENTERS(ctr,freq[i],&length); /* read the data */
 }

 printf("Measurement complete. Press a key to continue.\n");
 getch();

}

/* Function to send command to Agilent 53131A */

void sendhp(hpib_cmd)
char *hpib_cmd;
{

char hpcmd[80]; /* Variables used by function */
int length;
strcpy(hpcmd,hpib_cmd);
length=strlen(hpcmd);
error=IOOUTPUTS(ctr,hpcmd,length); /* Send command to Agilent 53181A */
if (error!=0)
printf("Error during GPIB: %d Command %s\n",error,hpcmd);

}

Programming Your Counter for Remote Operation
Programming Examples

3-100

4

Commands Reference
A Dictionary

Commands Reference
Introduction

4-2

Introduction
This chapter describes the SCPI Subsystem commands and the IEEE 488.2

The commands are presented in alphabetical order.

• SCPI Subsystem commands are described on pages 4- 4 thru
4-98.

• IEEE 488.2 Common command descriptions start on page 4- 99.

• Device Clear and Group Execute Trigger descriptions are also included on
pages 4-31 and 4-42, respectively.

For each command description:

• where the phrase “Sets or queries” is used, the command setting can be
queried by omitting the parameter and appending a “?” to the last
command keyword.

For example,

:INPut:COUPling [AC | DC]

can be queried with

:INPut:COUPling?

• unless otherwise noted, a command described as an event cannot be
queried.

• unless otherwise noted, the command setting is affected by s ave/recall.

• the square brackets, [], are used to indicate that the element(s) within the
brackets are optional. Note, the brackets are NOT part of the command and
should not be sent to the Counter.

• the vertical bar, |, is used to mean “OR” and is used to separate alternative
options.

Common commands for the Agilent 53181A 225 MHz Frequency Counter. The
information in this chapter will help you program the Counter over the GPIB.

Commands Reference
Introduction

4-3

• the short form of keywords is shown in uppercase.

• quotation marks may be part of the comma nd's parameter; the quotation
marks shown must be sent to the Counter.

• unless otherwise noted, the command is sequential (not overlapped).

See Chapter 3 in this guide for details regarding command syntax, parameter types,
and query response types.

See the Agilent 53181A Operating Guide, Table 2-6, for power-up values.

Commands Reference
:ABORt

4-4

:ABORt
This command is an event that causes the Counter to abort, as quickly as possible,
any measurement in progress.

The :ABORt command is not complete until the current measurement is stopped.
The execution of an ABORt command sets false any Pending Operation Flags that
were set true by initiation of measuring.

• If :ABORt is issued while the measurement cycle is idle (:INIT:CONT OFF
and pending operation flag is false), the command will be ignored.

• If :ABORt is issued while a single measurement is in progress
(:TRIG:COUN:AUTO OFF or :CALC3:AVER OFF,
:INIT:CONT OFF, and pending operation flag is true), the measurement will
be aborted and pending operation flag set false.

• If :ABORt is issued while repetitive measurement are being made
(:INIT:CONT ON), the current measurement in progress will be aborted and
the pending operation flag set false. Then, a new measurement will
automatically be initiated and the pending operation flag set true.

• If :ABORt is issued while a block of measurements is in progress
(:TRIG:COUN:AUTO ON and :CALC3:AVER ON,
:INIT:CONT OFF, and pending operation flag is true), the measurement block
will be aborted and the pending operation flag set false.

• When a measurement or block of measurements is aborted, the Measuring bit
in the Operation Status Register will be set false.

• Aborting a measurement in progress invalidates the result.

Stop/Single

Comments

Related
Front-Panel

Keys

Commands Reference
:CALCulate Subsystems

4-5

:CALCulate Subsystems
Three :CALCulate subsystems (:CALCulate[1], :CALCulate2, and :CALCulate3)
perform post-acquisition data processing and data transfer of the corresponding
results. Functions in the SENSe subsystem are related to data acquisition, while the
:CALCulate systems operate on the data acquired by a SENSe function as shown in
Figure 4-1.

The :CALCulate subsystems are logically between the :SENSe subsystem and the
data output to either the bus or display. When a measurement is initiated (by a
:MEASure, :READ, or an :INITiate command), the :SENSe subsystem collects data.
This data is transformed by :CALCulate[1|2|3], as specified, and then passed on to
the selected output. In effect, the collection of new data “initiates” the :CALCulate
subsystems. The :CALCulate subsystems may also be directed by command to
transform, making it possible to change the configuration of :CALCulate and
consequently derive a different set of results from the same SENSe data set without
re-acquiring SENSe data.

Calculated results are available (valid) until new results are computed or until
relevant instrument state is changed.

The :CALCulate3 subsystem consists of two sub-blocks as shown in Figure 4-1. The
data flows through the sub-blocks in a serial fashion. The manner in which these
sub-blocks are arranged is specified in the :CALC3:PATH? query.

The :CALCulate[1|2|3] settings are not used when measuring Voltage Peaks
(voltage minimum, maximum, or peak-to-peak).

Not until :CALCulate[1]:MATH:STATe is set to ON will any of the :CALCulate[1]
settings or :TRACe[:DATA] settings be used.

Not until :CALCulate2:LIMit:STATe is set to ON will any of the :CALCulate2
settings be used.

Not until :CALCulate3:LFILter:STATe is set to ON will any of the
:CALCulate3:LFILter settings be used.

Not until :CALCulate3:AVERage:STATe is set to ON will any of the
:CALCulate3:AVERage settings be used.

NOTE

Commands Reference
:CALCulate Subsystems

4-6

Figure 4-1. The CALCulate Subsystems

:SENSe :CALCulate1:MATH

:CALCulate2:LIMit

:CALCulate3:LFILter

:CALCulate3:AVERage

[:SENSe]:DATA? :CALCulate1:DATA?

:CALC3:AVERage:ALL?
:CALC3:DATA?

:CALC2:LIMit:FCOunt:UPPer?
:CALC2:LIMit:FCOunt:LOWer?
:CALC2:LIMit:PCOunt?
:CALC2:LIMit:FAIL?

:CALCulate[1|2|3]

RAW

LIMIT TESTING

SCALED/OFFSET
RESULT

STATISTICS

[:SENSe]:DATA?

RAW
:FETCh?:FETCh?

Voltage Peaks Frequency, Period, or Ratio

MEASUREMENT MEASUREMENT

Commands Reference
:CALCulate[1] Subsystem

4-7

:CALCulate[1] Subsystem
Performs post-acquisition math (scale/offset) processing (on the data aquired by a
SENSe function) and data transfer of the scaled/offset result. See the :TRACe
subsystem for commands used to set the scale and offset.

Not until :CALCulate[1]:MATH:STATe is set to ON will any of the :CALCulate[1]
settings or :TRACe[:DATA] settings be used.

:CALCulate[1]:DATA?
Queries the current scaled and offset measurement result .

• Result will be formatted according to :F ORMat[:DATA] ASCii | REAL
setting.

• When ASCii format is used, numeric data is transferred as ASCII bytes in
<NR3> format. The number of significant digits will range from 1 to 15,
depending on the measurement resolution. Only significant digits will be
returned.

• If no valid result exists, Not a Number 9.91E37 is returned and error -230 is
generated.

• If the current measurement is Voltage Peaks, Not a Number 9.91E37 is
returned and error -221 is generated.

• Query only.

• If this command is issued when math is enabled and while a measurement is in
progress, no response will be produced until the measurement completes.

• This command holds off subsequent commands from being processed until a
measurement completes. This holdoff action can only be canceled by the
measurement completing, a device clear, or power cycle.

• The last calculated result remains valid until a new computation is made or a
relevant instrument state is modified.

NOTE

Query Response

Comments

Commands Reference
:CALCulate[1] Subsystem

4-8

:CALCulate[1]:FEED "[:]SENSe[1]"
Sets or queries the data flow to be fed into the CALCulate[1] block.

Since the Counter can only sense one function at a time, there is only one valid
parameter.

The string "SENS" is returned.

*RST: "SENSe[1]"

:CALCulate[1]:IMMediate
This command is an event that causes the Counter to recalculate existing data
without re-acquiring data. (This recalculation also happens automatically when any
change is made to the
:CALCulate[1|2] subsystems while :CALC:IMM:AUTO is ON.)

:CALC:IMM? is semantically equivalent to :CALC:IMM;DATA?. The query form
outputs the results of the new calculation.

This command will not affect:

:CALC2:LIM:FCO
:CALC2:LIM:PCO
:CALC3: ...

• Result will be formatted according to :FORMat[:DATA] ASCii | REAL
setting.

• When ASCii format is used, numeric data is transferred as ASCII bytes in
<NR3> format. The number of significant digits will range from 1 to 15,
depending on the measurement resolution. Only significant digits will be
returned.

• If no valid result exists, Not a Number 9.91E37 is returned and error -230 is
generated.

• If the current measurement is Voltage Peaks, Not a Number 9.91E37 is
returned and error -221 is generated.

This command causes post-processing to occur in the :CALCulate2 subsystem, as
well as the CALCulate subsystem.

Query Response

Comments

Query Response

Comments

Commands Reference
:CALCulate[1] Subsystem

4-9

:CALCulate[1]:IMMediate:AUTO <Boolean>
Sets or queries whether post-processing (recalculation) will automatically occur
whenever any changes are made to the :CALCulate[1|2] subsystems.

With :CALC:IMM:AUTO set to OFF, :CALCulate[1|2] only produces new results
when new SENSe data is acquired or when the :CALCulate:IMMediate command is
received.

Once :CALC:IMM:AUTO is set to ON, the CALCulate[1|2] subsystems produce
new results when any CALCulate[1|2] command is processed, even when new
SENSe data is not being acquired. This allows the user to make configuration
changes in the CALCulate[1|2] subsystems and immediately have new
CALCulate[1|2] results on the same SENSe data.

• Single ASCII-encoded byte, 0 or 1.

• A value of 0 indicates OFF; a value of 1 indicates ON.

• *RST: OFF

• This command affects all of the post-processing subsystems settings
(:CALC:IMM:AUTO).

• Note that the Counter powers up with :CALC:IMM:AUTO set to ON, but *RST
sets it to OFF.

:CALCulate[1]:MATH Subtree
This subtree collects together the commands related to math (scale/offset)
processing. See the :TRACe subsystem for commands used to set the scale and
offset.

Many of these commands are query-only because the Counter has only one fixed
math operation.

:CALCulate[1]:MATH[:EXPRession]:CATalog?
Queries defined equation name.

The string "SCALE_OFFSET" is returned.

Query only.

Query Response

Comments

Query Response

Comments

Commands Reference
:CALCulate[1] Subsystem

4-10

:CALCulate[1]:MATH[:EXPRession][:DEFine]?
Queries equation used for math operation.

A sequence of ASCII-encoded bytes:

 ("SENS" * SCALE + OFFSET)

terminated with a new line and EOI.

• Query only.

• This query should be the la st query in a terminated program message;
otherwise, error -440 is generated.

:CALCulate[1]:MATH[:EXPRession]:NAME SCALE_OFFSET
 or
:CALCulate[1]:MATH[:EXPRession]:SELect SCALE_OFFSET
Sets or queries the name of the expression selected for math processing .

A sequence of ASCII-encoded bytes: SCALE_OFFSET

*RST: SCALE_OFFSET

:CALCulate[1]:MATH:STATe <Boolean>
Sets or queries the math enable .

This enable specifies whether or not measurement (SENSe) data will be scaled and
offset.

• Single ASCII-encoded byte, 0 or 1.

• A value of 0 indicates OFF; a value of 1 i ndicates ON.

• *RST: OFF

• Updating the math enable causes the limit counts (:CALC2:LIM:FCO,
:CALC2:LIM:PCO) to be cleared.

Scale & Offset

Query Response

Comments

Query Response

Comments

Query Response

Comments

Related
Front-Panel

Keys

Commands Reference
:CALCulate2 Subsystem

4-11

:CALCulate2 Subsystem
This subsystem performs post-acquisition limit testing and data transfer.

Not until :CALCulate2:LIMit:STATe is set to ON will any of the :CALCulate2
settings be used.

:CALCulate2:FEED "[:]CALCulate[1]"
Sets or queries the data flow to be fed into the CALCulate2 block.

The string "CALC" is returned.

*RST: "CALCulate[1]"

:CALCulate2:IMMediate
This command is an event that causes the Counter to recalculate existing data
without re-acquiring data. (This recalculation also happens automatically when any
change is made to the :CALCulate[1|2] subsystems while :CALC2:IMM:AUTO is
ON.)

The only limit result that can be truly post-processed is :CALC2:LIM:FAIL?. The
limit counts (:CALC2:LIM:FCO and :CALC2:LIM:PCO) reflect measurements that
were limit-tested at
time of data aquisition.

This command will not affect:

:CALC2:LIM:FCO
:CALC2:LIM:PCO
:CALC3: ...

This command causes post-processing to occur in the :CALCulate[1] subsystem, as
well as the :CALCulate2 subsystem.

NOTE

Query Response

Comments

Comments

Commands Reference
:CALCulate2 Subsystem

4-12

:CALCulate2:IMMediate:AUTO <Boolean>
Sets or queries whether post-processing (recalculation) will automatically occur
whenever any changes are made to the :CALCulate[1|2] subsystems.

With :CALC2:IMM:AUTO set to OFF, CALCulate[1|2] only produces new results
when new SENSe data is acquired or when the CALCulate2:IMMediate command
is received.

Once :CALC2:IMM:AUTO is set to ON, the CALCulate[1|2] subsystems produce
new results when any CALCulate[1|2] command is processed, even when new
SENSe data is not being acquired. This allows the user to make configuration
changes in the CALCulate[1|2] subsystems and immediately have new
CALCulate[1|2] results on the same SENSe data.

• Single ASCII-encoded byte , 0 or 1.

• A value of 0 indicates OFF; a value of 1 indicates ON.

• *RST: OFF

• This command affects all of the post-processing subsystems settings
(:CALC[1]:IMM:AUTO).

• Note that the Counter powers up with :CALC2:IMM:AUTO set to ON, but
*RST sets it to OFF.

• The only limit result that can be truly post-processed is :CALC2:LIM:FAIL?.
The limit counts (:CALC2:LIM:FCO and :CALC2:LIM:PCO) reflect
measurements that were limit-tested at
time of data aquisition.

:CALCulate2:LIMit Subtree
This subtree collects together the commands associated with controlling and getting
reports from a single LIMit test. The limit test is defined as both an upper and lower
limit test.

If the measurement cycle is aborted or terminates abnormally, the limit test status
will be unaffected. That is, an aborted or abnormally terminated measurement does
not get limit tested and has no effect on the limit test results.

Query Response

Comments

Commands Reference
:CALCulate2 Subsystem

4-13

:CALCulate2:LIMit:CLEar:AUTO <Boolean>
Sets or queries if the limit test results are to be cleared with each
:INITiate[:IMMediate] and :INITiate:CONTinuous ON operation.

• Single ASCII-encoded byte, 0 or 1.

• A value of 0 indicates OFF; a value of 1 indicates ON.

• *RST: ON

• When AUTO is ON, the Counter will perform the following whenever
:INIT[:IMM] or :INIT:CONT ON is executed:

– Invalidate the limit data.
– Clear :CALC2:LIM:FAIL, :CALC2:LIM:FCOunt, and
 :CALC2:LIM:PCOunt information.
– Turn off the front-panel display's Limit annunciator.
– Set the Limit-Detect output of the RS-232 connector to the
 in-limit voltage level.

• When AUTO is OFF, the only way to clear the limit-test results is to send
:CALC2:LIM:CLE[:IMM].

:CALCulate2:LIMit:CLEar[:IMMediate]
This command is an event that causes the Counter to

• immediately invalidate the limit data,

• clear the information in :CALC2:LIM:FAIL, :CAL C2:LIM:FCOunt, and
:CALC2:LIM:PCOunt,

• turn off the front-panel display's Limit annunciator, and

• set the Limit-Detect output to its in-limit voltage level.

If :CALC2:LIM:STAT is OFF, error -221 is generated.

:CALCulate2:LIMit:DISPlay GRAPh | NUMBer
Sets or queries whether the measurement display is numeric or symbolic (on a
graph).

When :CALC2:LIM:DISP is NUMBer, the measurement results are displayed
numerically. When :CALC2:LIM:DISP is GRAPh, the measurement results are
displayed symbolically on a graph; the measurement result is represented by an
asterisk (*), while the upper and lower limits are each represented by a colon (:).

Query Response

Comments

Comments

Commands Reference
:CALCulate2 Subsystem

4-14

A sequence of ASCII-encoded bytes: GRAP or NUMB

• *RST: NUMBer

• This command updates the display mode immediately. The display update is
independent of :CALC2:IMM:AUTO state.

• See the section titled “How to Program the Counter to Display Results” in
Chapter 3 for programming examples.

Limit Modes

:CALCulate2:LIMit:FAIL?
Queries the status of the last measurement that was limit tested .

• Single ASCII-encoded byte, 0 or 1.

• A value of zero indicates the last tested measurement passed the limit test. A
value of one indicates the last tested measurement failed.

• If no valid result exists, 0 is returned and error -230 is generated.

• Query only.

• If this com mand is issued when limit testing is enabled and while a
measurement is in progress, no response will be produced until the
measurement completes.

• This command holds off subsequent commands from being processed until a
measurement completes. This holdoff action can only be canceled by the
measurement completing, a device clear, or power cycle.

• If the current measurement is Voltage Peaks, 0 is returned and error -221 is
generated.

Query Response

Comments

Related
Front-Panel

Keys

Query Response

Comments

Commands Reference
:CALCulate2 Subsystem

4-15

:CALCulate2:LIMit:FCOunt:LOWer?
Queries the number of limit test failures (that is, the Fail COunt) at the lower limit.

• Numeric data transferred as ASCII bytes in <NR1> format.

• If CALC2:LIM:STATe is OFF, 0 is returned and error -221 is generated.

• If no valid result exists, 0 is returned and error -230 is generated.

• If the current measurement is Voltage Peaks, 0 is re turned and error -221 is
generated.

Query only.

:CALCulate2:LIMit:FCOunt[:TOTal]?
Queries the total Fail COunt (that is, the number of measurements that have failed
the limit test). No failures is indicated by 0.

• Numeric data transferred as ASCII bytes in <NR1> format.

• If CALC2:LIM:STATe is OFF, 0 is returned and error -221 is generated.

• If no valid result exist s, 0 is returned and error -230 is generated.

• If the current measurement is Voltage Peaks, 0 is returned and error -221 is
generated.

Query only.

:CALCulate2:LIMit:FCOunt:UPPer?
Queries the number of limit test failures (that is, the Fail COunt) at the upper limit.

• Numeric data transferred as ASCII bytes in <NR1> format.

• If CALC2:LIM:STATe is OFF, 0 is returned and error -221 is gene rated.

• If no valid result exists, 0 is returned and error -230 is generated.

• If the current measurement is Voltage Peaks, 0 is returned and error -221 is
generated.

Query only.

:CALCulate2:LIMit:LOWer[:DATA] <numeric_value> [HZ | S]

Query Response

Comments

Query Response

Comments

Query Response

Comments

Commands Reference
:CALCulate2 Subsystem

4-16

Sets or queries the lower limit used for limit testing.

When the result is less than the lower limit, a fail is reported; when the result is
equal to the lower limit, a fail is not reported.

If math is enabled (:CALC:MATH:STATe ON), the limit value specified should
take into account that the limit testing is on measurements that have been scaled
and offset.

-9.9999990000E+12 to -1.0000000000E-13, 0.0000000000, +1.0000000000E-13
to +9.9999990000E+12.

11 digits

Numeric data transferred as ASCII bytes in <NR3> format with eleven significant
digits.

• *RST: 0.0000000000

• This command couples :CALC3:LFIL:LOW to the same value.

• Updating the lower limit value causes the limit counts (:CALC2:LIM:FCO,
:CALC2:LIM:PCO) to be cleared.

• The front panel menu item is not always able to display all of the significant
digits of this value. When this is the case, the displayed value is different from
the actual value in that the displayed value has been rounded. However, using
the front panel Enter key, while this value is in the 11-digit display, will
update the actual value to the displayed (rounded) value.

Uppr & Lower

<numeric_value>
Range

<numeric_value>
Resolution

Query Response

Comments

Related
Front-Panel

Keys

Commands Reference
:CALCulate2 Subsystem

4-17

:CALCulate2:LIMit:PCOunt[:TOTal]?
Queries the total Pass COunt (that is, the number of measurements that passed the
limit test).

• Numerical data transferred as ASCII bytes in <NR1> format.

• If CALC2:LIM:STATe is OFF, 0 is return ed and error -221 is generated.

• If no valid result exists, 0 is returned and error -230 is generated.

• If the current measurement is Voltage Peaks, 0 is returned and error -221 is
generated.

Query only.

:CALCulate2:LIMit:STATe <Boolean>
Sets or queries the limit test enable .

• Single ASCII-encoded byte, 0 or 1.

• A value of 0 indic ates OFF; a value of 1 indicates ON.

• *RST: OFF

• When :CALC2:LIM:STAT OFF is sent, it causes the Counter to:

– Invalidate the limit data and clear the information in
 :CALC2:LIM:FAIL, :CALC2:LIM:FCOunt, and
 :CALC2:LIM:PCOunt.
– Turn off the front-panel display's Limit annunciator.
– Set the Limit-Detect output to the in-limit voltage level.

Limit Modes

Query Response

Comments

Query Response

Comments

Related
Front-Panel

Keys

Commands Reference
:CALCulate2 Subsystem

4-18

:CALCulate2:LIMit:UPPer[:DATA] <numeric_value> [HZ | S]
Sets or queries the upper limit used for limit testing.

When the result is greater than the upper limit, a fail is reported; when the result is
equal to the upper limit, a fail is not reported.

If math is enabled (:CALC:MATH:STATe ON), the limit value specified should
take into account that the limit testing is on measurements that have been scaled
and offset.

-9.9999990000E+12 to -1.0000000000E-13, 0.0000000000, +1.0000000000E-13
to +9.9999990000E+12.

11 digits

Numeric data transferred as ASCII bytes in <NR3> format with eleven significant
digits.

• *RST: 0.0000000000

• This command coupl es :CALC3:LFIL:UPP to the same value.

• Updating the upper limit value causes the limits counts (:CALC2:LIM:FCO,
:CALC2:LIM:PCO) to be cleared.

• The front panel menu item is not always able t o display all of the significant
digits of this value. When this is the case, the displayed value is different from
the actual value in that the displayed value has been rounded. However, using
the front panel Enter key, while this value is in the 11-digit display, will
update the actual value to the displayed (rounded) value.

Uppr & Lower

<numeric_value>
Range

<numeric_value>
Resolution

Query Response

Comments

Related
Front-Panel

Keys

Commands Reference
:CALCulate3 Subsystem

4-19

:CALCulate3 Subsystem
This subsystem performs post-acquisition statistics computation and data transfer.

Not until :CALCulate3:LFILter:STATe is set to ON will any of the
:CALCulate3:LFILter settings be used.

Not until :CALCulate3:AVERage[:STATe] is set to ON will any of the
:CALCulate3:AVERage settings be used.

The statistics results are unaffected by post-processing invoked with
:CALC[1|2]:IMM.

:CALCulate3:AVERage Subtree
This subtree collects together the commands associated with the statistics
capabilities.

The statistics results combine successive measurements to produce a composite
result

Not until :CALCulate3:AVERage[:STATe] is set to ON will any of one
:CALCulate3:AVERage settings be used.

:CALCulate3:AVERage:ALL?
This query returns all four statistics (i.e., mean , standard deviation, maximum , and
minimum).

Statistics should be enabled (:CALC3:AVER[:STATe] ON) before attempting to
query results.

• Numeric data transferred as ASCII bytes in <NR3> format. The number of
significant digits will range from 1 to 15, depending on the measurement
resolution.

• Numbers are separated by commas. The ordering of numbers within the
response is mean, standard deviation, minimum, and maximum.

• If :CALC3:AVER[:STATe] is OFF, four comma-separated Not a Number
9.91E37 values are returned and error -221 is generated.

• If no valid result exists, four comma-separated Not a Number 9.91E37 values
are returned and error -230 is generated.

NOTE

Query Response

Commands Reference
:CALCulate3 Subsystem

4-20

• If the current measurement is Voltage Peaks, Not a Number 9.91E37 is
returned and error -221 is generated.

• Query only.

• The last calculated result remains valid until a new computation is made or a
relevant instrument state is modified.

Stats

:CALCulate3:AVERage:CLEar
This command is an event that causes the Counter to:

• invalidate the statistics results,

• clear the statistics current count to 0, and

• report the negative status condition (NOT Computing Statistics) to bit 8 of the
Operation Status Register.

If :CALC3:AVER[:STATe] is OFF, error -221 is generated.

:CALCulate3:AVERage:COUNt <numeric_value>
Sets or queries the number of measurements to combine for statistics processing .

After :CALC3:AVER:COUNt measurements is reached, a new set of
:CALC3:AVER:COUNt measurements must be acquired before another statistics
computation will occur.

2 to 1,000,000

1

Numeric data transferred as ASCII bytes in <NR1> format.

*RST: 100

Comments

Related
Front-Panel

keys

Comments

<numeric_value>
Range

<numeric_value>
Resolution

Query Response

Comments

Commands Reference
:CALCulate3 Subsystem

4-21

Stats

:CALCulate3:AVERage:COUNt:CURRent?
Queries the current count (that is, the number of data values collected for statistical
computation).

• Numeric data transferred as ASCII bytes in <NR1> format.

• Range is 0 to 1,000,000.

• If :CALC3:AVER[:STATe] is OFF, error -221 is generated.

• If the current measurement is Voltage Peaks, 0 is returned and error -221 is
generated.

• Query only.

• No statistics results exist until the :CALC3:AVER:COUN:CURR? is equal to
the specified :CALC3:AVER:COUN.

Stats

:CALCulate3:AVERage[:STATe] <Boolean>
Sets or queries the statistics post-processing enable .

• Single ASCII-encoded byte, 0 or 1.

• A value of 0 indicates OFF; a value of 1 indicates ON.

• *RST: OFF

• When this enable is ON, and :TRIG:COUN:AUTO is ON, and
[:SENS]:FUNC[:ON] is not a Voltage Peak function, then :INIT[:IMM]
initiates a complete block of measurements. See :TRIG:COUN:AUTO in this
chapter for specifics.

• When this enable is OFF, :INIT[:IMM] always initiates a single measurement.

Related
Front-Panel

keys

Query Response

Comments

Related
Front-Panel

keys

Query Response

Comments

Commands Reference
:CALCulate3 Subsystem

4-22

Stats

:CALCulate3:AVERage:TYPE MAXimum | MINimum | SDEViation | SCALar
or MEAN
Selects which statistical result will appear:

• in the :CALC3:DATA? response, and

• on the front-panel display when :DISP[:WIND]:TEXT:FEED is set to
"CALC3".

A sequence of ASCII-encoded bytes: MAX, MIN, SDEV, or MEAN

• *RST: MEAN

• If :DISP[:WIND]:TEXT:FEED is "CALC3", then this command updates the
display immediately.

Stats

:CALCulate3:DATA?
Queries the statistical result specified by :CALC3:AVER:TYPE.

Enable statistics (:CALC3:AVER[:STATe] ON) before attempting to query results.

• Result will be formatted according to :FORMat[:DATA] ASCii | REAL
setting.

• When ASCii format is used, num eric data is transferred as ASCII bytes in
<NR3> format. The number of significant digits will range from 1 to 15,
depending on the measurement resolution. Only significant digits will be
returned.

• If :CALC3:AVER[:STATe] i s OFF, Not a Number 9.91E37 is returned and
error -221 is generated.

• If no valid result exists, Not a Number 9.91E37 is returned and error -230 is
generated.

Related
Front-Panel

keys

Query Response

Comments

Related
Front-Panel

keys

Query Response

Commands Reference
:CALCulate3 Subsystem

4-23

• If the current measurement is Voltage Peaks, Not a Number 9.91E37 is
returned and error -221 is generated.

• Query only.

• The last calculated result remains valid until a new computation is made or a
relevant instrument state is modified.

:CALCulate3:FEED "[:]CALCulate[1]"
Sets or queries the data flow to be fed into the CALCulate3 block.

The string "CALC" is returned.

*RST: "CALCulate[1]"

:CALCulate3:LFILter Subtree
This subtree collects together the commands used to specify which measurements
will be used in computing statistics; out-of-limit measurements can be filtered out of
the statistics processing.

Not until :CALCulate3:LFILter:STATe is set to ON will any of the
:CALCulate3:LFILter settings be used.

:CALCulate3:LFILter:LOWer[:DATA] <numeric_value> [HZ | S]
Sets or queries the statistics filter lower limit.

If limit filtering is enabled (:CALC3:LFIL:STAT ON), any measurements below
this value will not be combined into the statistics computation.

If math is enabled (:CALC:MATH:STATe ON), the limit value specified should
take into account that the filtering is on measurements that have been scaled and
offset.

-9.9999990000E+12 to -1.0000000000E-13, 0.0000000000, +1.0000000000E-13
to +9.9999990000E+12.

11 digits

Numeric data transferred as ASCII bytes in <NR3> format with eleven significant
digits.

Comments

Query Response

Comments

NOTE

<numeric_value>
Range

<numeric_value>
Resolution

Query Response

Commands Reference
:CALCulate3 Subsystem

4-24

• *RST: 0.0000000000

• This command couples :CALC2:LIM:LOW to the same value.

• Updating the lower limit value causes the limit counts (:CALC2:LIM:FCO,
:CALC2:LIM:PCO) to be cleared.

• The front panel menu item is not always able to display all of the significant
digits of this value. When this is the case, the displayed value is different from
the actual value in that the displayed value has been rounded. However, using
the front panel Enter key, while this value is in the 11-digit display, will
update the actual value to the displayed (rounded) value.

:CALCulate3:LFILter:STATe <Boolean>
Sets or queries the statistics filter enable. When set to ON, only measurements
(scaled and offset if math is enabled) which are within the filter limits are combined
into the statistics processing. When set to OFF, all measurements, whether they are
within or without the filter limits are combined into the statistics processing.

• Single ASCII-encoded byte, 0 or 1.

• A value of 0 indic ates OFF; a value of 1 indicates ON.

*RST: OFF

Stats

:CALCulate3:LFILter:UPPer[:DATA] <numeric_value> [HZ | S]
Sets or queries the statistics filter upper limit.

If limit filtering is enabled (:CALC3:LFIL:STAT ON), any measurements above
this value will not be combined into the statistics computation.

If math is enabled (:CALC:MATH:STATe ON), the limit value specified should
take into account that the filtering is on measurements that have been scaled and
offset.

Comments

Query Response

Comments

Related
Front-Panel

Keys

Commands Reference
:CALCulate3 Subsystem

4-25

-9.9999990000E+12 to -1.0000000000E-13, 0.0000000000, +1.0000000000E-13
to +9.9999990000E+12.

11 digits

Numeric data transferred as ASCII bytes in <NR3> format with eleven significant
digits.

• *RST: 0.0000000000

• This command couples :CALC2:LIM:UPP to the same value.

• Updating the upper limit value causes the limit counts (:CALC2:LIM:FCO,
:CALC2:LIM:PCO) to be cleared.

• The front panel menu item is not always able to display all of the significant
digits of this value. When this is the case, the displayed value is different from
the actual value in that the displayed value has been rounded. However, using
the front panel Enter key, while this value is in the 11-digit display, will
update the actual value to the displayed (rounded) value.

:CALCulate3:PATH?
Queries the order in which CALCulate3 sub-blocks are to be processed.

For the Counter, this sequence is fixed to be LFILter followed by AVERage.

A sequence of ASCII-encoded bytes: LFIL, AVER

Query only.

<numeric_value>
Range

<numeric_value>
Resolution

Query Response

Comments

Query Response

Comments

Commands Reference
:CALibration Subsystem

4-26

:CALibration Subsystem
:CALibration[:ALL]?
This query causes an internal interpolator self-calibration .

• Numeric data transferred as ASCII bytes in <NR1> format.

• A value of zero indicates the calibration completed without error. A value of
one indicates the calibration completed with error.

Query only.

:CALibration:COUNt?
Queries the number of times the Counter has been calibrated.

By monitoring the calibration count, you can determine whether an unauthorized
calibration has been performed.

The following commands (as well as the front-panel invoked calibrations)
increment the count upon the completion of a successful calibration:

:DIAG:CAL:INP:GAIN:AUTO ONCE
:DIAG:CAL:INP:OFFS:AUTO ONCE
:DIAG:CAL:ROSC:AUTO ONCE

The :CAL:DATA command also increments the calibration count.

Numeric data transferred as ASCII bytes in <NR1> format.

• Query only.

• The calibration count is stored in non-volatile memory, thus cycling power will
not reset value.

• The calibration count is unaffected by power-on, save/recall, and *RST.

• The calibration count increments up to a maximum of 32,767 after which it
wraps around to 1. (A value of 0 indicates no calibration has been performed
since the last reset of the non-volatile memory.)

• Your Counter was calibrated before it left the factory. When you receive your
Counter, read the calibration count to determine its initial value.

Query Response

Comments

Query Response

Comments

Commands Reference
:CALibration Subsystem

4-27

Scale & Offset / POWER (Calibration Menu)

:CALibration:DATA <arbitrary block>
Sets or queries the calibration data (input gain, input offset, and reference
oscillator).

Before performing calibration, it is a good idea to query (:CAL:DATA?) and store
the current calibration values in your program or on a disk in case an error occurs
during the calibration process. See the sample program “How to Read and Store
Calibration Information” in Chapter 3, “Programming Your Frequency Counter for
Remote Operation.”

• Definite Length Block.

• The query response will b e #256<56 calibration-data bytes> terminated
with a new line and EOI.

• This command does not affect the interpolator calibration data.

• If the <arbitrary block> command parameter ha s the incorrect number of bytes
or does not checksum, error -220 is generated.

• If the update to EEPROM fails, error +2013 is generated.

• The calibration data (updated by this command) is st ored in
non-volatile memory, so cycling power will not reset these values. The only
way to update the calibration data is through this command or by initiating the
individual calibrations (see :DIAG:CAL: ...).

• The calibration data (updated by this command) is unaffected by power-on,
save/recall, and *RST.

Related
Front-Panel

Key

Query Response

Comments

Commands Reference
:CALibration Subsystem

4-28

:CALibration:SECurity Subtree
This subtree provides capabilities related to the security of the Counter's calibration
factors.

:CALibration:SECurity:CODE <NRf>
Sets the calibration security code .

To change the security code , the Counter must first be unsecured. To unsecure the
Counter, use the :CALibration:SECurity:STATe command.

0 to 9999999

1

• No query.

• The calibration code is stored in non-volatile memory, and is unaffected by
power-on, save/recall, and *RST.

Scale & Offset / POWER (Calibration Menu)

:CALibration:SECurity:STATe <Boolean>, <NRf>
Sets and queries the calibration security state .

To unsecure for calibration , specify OFF with the present security code. When the
Counter is unsecure, any calibration can be performed.

To secure against calibration, specify ON with the present security code. When the
Counter is secure, no calibration can or will be performed (except for interpolator
calibration).

0 to 9999999

1

• Single ASCII-encoded byte, 0 or 1.

• A value of 0 indicates the Coun ter is unsecure; a value of 1 indicates the
Counter is secure.

<NRf> Range

<NRf> Resolution

Comments

Related
Front-Panel

key

<NRf> Range

<NRf> Resolution

Query Response

Commands Reference
:CALibration Subsystem

4-29

• The calibration state is stored in non-volatile memory, and is unaffected by
power-on, save/recall, and *RST.

• The security code is set to 53181 (the model number of the instrument) when
the Counter is shipped from the factory. If you forget your security code, you
can reset the security code to the
model-number default by resetting all of the non-volatile memory to a default
state. See the Assembly-Level Service Guide for more information.

Scale & Offset / POWER (Calibration Menu)

Comments

Related
Front-Panel

Keys

Commands Reference
:CONFigure Subsystem

4-30

:CONFigure Subsystem
Refer to the Measurement Instructions section in this chapter for a description of
:CONFigure.

Commands Reference
Device Clear

4-31

Device Clear
The full capability of the Device Clear IEEE 488.1 interface function is
implemented in the Counter. This function allows a device to be initialized to a
cleared state. The device-dependent effect is described below.

In response to either the Device Clear message or the Selected Device Clear
message, the Counter:

• clears the input b uffer and Output Queue,

• resets the parser, execution control, and response formatter,

• clears any command that would prevent processing a *RST or other commands,

• disables the effect of a prior *OPC command, and

• terminates the holdoff action of a *WAI, *OPC?, or data query (:MEASure
query, :READ query, :FETCh query, :CALC:DATA?, :CALC2:LIM:FAIL?)
waiting for pending operation to complete.

Also, a front-panel-initiated diagnostic or calibration may be aborted (for example,
if the front-panel diagnostic or calibration is waiting for user input).

Commands Reference
:DIAGnostic Subsystem

4-32

:DIAGnostic Subsystem
This subsystem controls the remote calibration of the Counter.

All of the calibration values, with the exception of the interpolator values, are stored
in non-volatile memory and are unaffected by
power-on, save/recall, and *RST.

Any of the commands which perform a calibration, with the exception of the
interpolator calibration, will generate error -221 if the user tries to execute a
calibration while the Counter is secured. (Note, this will not occur in early revisions
of the Counter because calibration security does not exist.) Please refer to the
:CALibration:SECurity subtree for command specifics regarding calibration
security.

:DIAGnostic:CALibration:INPut[1]:GAIN:AUTO ONCE | OFF
Calibrates the channel 1 input trigger GAIN when the ONCE parameter is used.

Before sending this command, connect a +5V source to channel 1.

A sequence of ASCII-encoded bytes: OFF

• The calibration values are stored in non-volatile memory,and are unaffected by
power-on, save/recall, and *RST.

• Use :DIAG:CAL:STAT? to check for successful calibration.

• After calibration is completed, the state of this command's parameter is OFF.

Scale & Offset/POWER (Calibration Menu)

Query Response

Comments

Related
Front-Panel

Keys

Commands Reference
:DIAGnostic Subsystem

4-33

:DIAGnostic:CALibration:INPut[1]:OFFSet:AUTO ONCE | OFF
Calibrates the channel 1 input trigger OFFSet when the ONCE parameter is used.

Before sending this command, BE SURE to disconnect any input signal from
channel 1.

A sequence of ASCII-encoded bytes: OFF

• The calibration values are stored in non-volatile memory, and are unaffected by
power-on, save/recall, and *RST.

• Use :DIAG:CAL:STAT? to check for successful calibration.

• After calibration is completed, the state of this command's parameter is OFF.

Scale & Offset/POWER (Calibration Menu)

:DIAGnostic:CALibration:INTerpolator:AUTO ONCE | OFF |ON
Calibrates the interpolator circuit in the Counter when the ONCE parameter is used.

AUTO ON enables automatic interpolator calibration on every measurement.
AUTO OFF disables automatic interpolator calibration.

A sequence of ASCII-encoded bytes: OFF or ON

• *RST: ON

• Use :DIAG:CAL:STAT? to check for successful calibration.

• After ONCE calibration is completed, the state of this command's parameter is
OFF.

• When :DIAG:CAL:INT is set to OFF, the Counter reports the positive status
condition (questionable Time and Frequency) to bits 2 and 5 of the
Questionable Status Register. When :DIAG:CAL:INT is set to ON, the Counter
reports the negative status condition (NOT questionable Time and Frequency)
to bits 2 and 5 of the Questionable Status Register.

• This enable is unaffected by save/recall.

:DIAGnostic:CALibration:ROSCillator:AUTO ONCE | OFF
Calibrates the reference oscillator when ONCE parameter is used.

Query Response

Comments

Related
Front-Panel

Keys

Query Response

Comments

Commands Reference
:DIAGnostic Subsystem

4-34

Before sending this command, connect 10 MHz to channel 1.

A sequence of ASCII-encoded bytes: OFF

• This command is available only if the ins trument contains the medium or high
stability oscillator option; otherwise, error -241 is generated.

• The calibration values are stored in non-volatile memory, and are unaffected by
power-on, save/recall, and *RST.

• Use :DIAG:CAL:STAT? to check for successful calibration.

• After calibration is completed, the state of this command's parameter is OFF.

Scale & Offset/POWER (Calibration Menu)

:DIAGnostic:CALibration:STATus?
Queries pass/fail status of the last calibration. It can be used after any calibration to
determine if the calibration was successful.

• Numeric data transferred as ASCII bytes in <NR1> format.

• A value of zero indicates that calibration completed without error. A value of
one indicates the calibration completed with error.

Query only.

Query Response

Comments

Related
Front-Panel

Keys

Query Response

Comments

Commands Reference
:DIAGnostic Subsystem

4-35

:DIAGnostic:MEASure:RESolution?
Queries the resolution of the current measurement .

For most measurements, the resolution of the result produced is defined by a single
equation published in the instrument specifications. For Frequency and Period
measurements, the specification calls out two formulas for resolution, and explains
the conditions in which each applies. The RESolution query makes it possible to
discern which formula is applicable.

The RESolution query returns HIGH when the Counter is measuring Frequency and
Period and is configured to use continuous-count technology to produce a higher-
resolution result. The query response is NORM for instances in which the
Frequency and Period measurement produces the same resolution as a traditional
counter (a lower-resolution result). For all other function choices, the query always
responds with NORM.

• A sequence of ASCII-encoded bytes: HIGH or NORM

• If no valid result exists, NORM is returned and error -230 is generated.

• Query only.

• If this command is issued while a measurement is in progress, no response will
be produced until the measurement completes.

• This command holds off subsequent commands from being processed until a
measurement completes. This holdoff action can only be canceled by the
measurement completing, a device clear, or power cycle.

Scale & Offset/POWER (Calibration Menu)

Query Response

Comments

Related
Front-Panel

Keys

Commands Reference
:DISPlay Subsystem

4-36

:DISPlay Subsystem
This subsystem controls the selection and presentation of textual information on the
Counter's display. This information includes measurement results. :DISPlay is
independent of, and does not modify, how data is returned to the controller.

See the section titled “How to Program the Counter to Display Results” in Chapter 3
of this guide.

:DISPlay:ENABle <Boolean>
Sets or queries whether the whole display (text area, annunciators, and indicators—
with the exception of Remote and SRQ) is visible.

• Single ASCII-encoded byte, 0 or 1.

• A value of 0 indicates OFF; a value of 1 indicates ON.

• *RST: ON

• This value is unaffected by save/recall.

:DISPlay:MENU[:STATe] OFF
This command, which only allows the OFF parameter, disables the menu display.
When the menu display is disabled, the results display appears.

The query indicates whether the menu display or result display is enabled.

• Single ASCII-encoded byte, 0 or 1.

• A value of 0 indicates the menu display is disabled (the result display is
enabled). A value of 1 indicates the menu display is enabled (the result display
is disabled).

• *RST: OFF

• To enable the menu display, use either the front-panel keys or the :SYST:KEY
command.

• This value is unaffected by save/recall.

Query Response

Comments

Query Response

Comments

Commands Reference
:DISPlay Subsystem

4-37

:DISPlay[:WINDow]:TEXT:FEED "[:]CALCulate2" |
"[:]CALCulate3"
Sets or queries what data flow is fed into the display.

Choose from the following <data_handle> strings:

• "[:]CALCulate2"— should be used to direct any result other than the statistics
to the result display

Specifically this would select one of the following results for the result display:

– raw measurement (if math is disabled— :CALC:MATH:STAT OFF)

– the scaled/o ffset measurement (if math is enabled— :CALC:MATH:STAT
ON)

– the limit graph (if limit testing is enabled with the graphic display—
:CALC2:LIM:STAT ON, :CALC2:LIM:DISP GRAPh)

• "[:]CALCulate3"— should be used to direct the statistical result (if statistics are
enabled, :CALC3:AVER[:STAT] ON) to the result display; the particular
statistic displayed is determined by :CALC3:AVER:TYPE.

A string is returned: "CALC2" or "CALC3."

• *RST: ":CALCulate2"

• Refer to the section titled “How to Program the Counter to Display Results” in
Chapter 3 of this guide.

Stats

Query Response

Comments

Related
Front-Panel

Keys

Commands Reference
:DISPlay Subsystem

4-38

:DISPlay[:WINDow]:TEXT:MASK <numeric_value>
Sets or queries the number of least significant (right-most) display digits "masked "
from the measurement result display. The remaining most significant display digits
are displayed, while the "masked" digits are represented by an underscore (__).

This setting affects how measurement results are
unaffected by this setting.

For example, a setting of five (:DISP[:WIND]:TEXT:MASK 5) masks the five
right-most displayed digits, and displays the remaining left-most seven digits
(including blanks). Thus, for a measurement result with twelve digits, such as
12.661, 403, 041, 9 MHz , the displayed digits 12.661, 40 MHz would appear and
the remaining five digits would be represented by an underscore (e.g., 12.661, 40_
, _ _ _ , _ MHz) . If some of the “unmasked” digits are blank digits, as in the case
of a measurement result that does not use all twelve digits, such as 93, 030.803, 34
Hz (the seven left-most display digits include two leading blanks), then only 93, 030
Hz would be displayed, with the remaining five digits represented by an underscore
(e.g., 93, 030, _ _ _ , _ _ Hz).

If the combination of this setting and the current measurement result is such that
fewer than three visible (non-blanked) digits would be displayed, then fewer than
the specified number of digits will be masked in order to provide a minimum of
three non-blanked, non-masked digits.

Voltage Peaks and standard deviation displayed results are unaffected by this
setting.

0 to 9

1

Numeric data transferred as ASCII bytes in <NR1> format.

• *RST: 0

• This setting is reset to 0 whenever the function or arming settings are updated
from the front-panel.

More Digits, Fewer Digits

:DISPlay[:WINDow]:TEXT:RADix COMMa | DPOint

<numeric_value>
Range

<numeric_value>
Resolution

Query Response

Comments

Related
Front-Panel

Keys

displayed; GPIB query results are

Commands Reference
:DISPlay Subsystem

4-39

Sets or queries the character used to separate integral and fractional portions of a
displayed number.

To conform to the numerical convention used in the USA, specify decimal point
with DPOint. To conform to the numerical convention used in many other
countries, specify COMMa.

For example:

With DPOint, one thousand is displayed as 1,000.0
With COMMa, one thousand is displayed as 1.000,0

A sequence of ASCII-encoded bytes: DPO or COMM

This value is stored in non-volatile memory. It is unaffected by
power-on, save/recall, and *RST.

Utility/POWER

Query Response

Comments

Related
Front-Panel

Keys

Commands Reference
:FETCh Subsystem

4-40

:FETCh Subsystem
Refer to the Measurement Instructions section in this chapter for a description of
:FETCh.

Commands Reference
:FORMat Subsystem

4-41

:FORMat Subsystem
This subsystem sets the data format for transferring numeric information. This data
format is used for response data by those commands that are specifically designated
to be affected by the :FORMat subsystem.

:FORMat[:DATA] ASCii | REAL
Sets or queries the data format type. Valid types are ASCii and REAL.

When ASCii type is selected, numeric response data is transferred as ASCII bytes in
<NR3> format. The numbers are separated by commas as specified in IEEE 488.2.
To indicate that no response data exists, Not a Number 9.91E37 is returned.

When REAL type is selected, response data is transferred in a
<definite length block> as a 64-bit IEEE 754 floating point number. To indicate
that no response data exists, Not a Number 9.91E37 is returned in the <definite
length block>.

A sequence of ASCII-encoded bytes: ASC or REAL

• *RST: ASCii

• This command affects the response format of the following commands:

:CALCulate:DATA?
:CALCulate3:DATA?
:FETCh?
:MEASure query
:READ?
[:SENSe]:DATA?
:TRACe[:DATA] query

Query Response

Comments

Commands Reference
Group Execute Trigger
(GET)

4-42

Group Execute Trigger
(GET)
The full capability of the Group Execute Trigger IEEE 488.1 interface function is
implemented in the Counter. This function permits the Counter to have its operation
initiated over the Bus. The
device-dependent result of this triggering is described in the following paragraph.

In response to the IEEE 488.1 Group Execute Trigger (GET) remote interface
message (while the Counter is addressed to listen), the Counter performs the action
defined by the *DDT command (see
page 4-101).

Commands Reference
:HCOPy Subsystem

4-43

:HCOPy Subsystem

:HCOPy:CONTinuous <Boolean>
Enables or disables printing results.

When :HCOPy:CONTinuous is enabled (:HCOP:CONT ON), the Counter prints
each measurement.

If statistics is enabled (:CALC3:AVER[:STAT] ON), all statistics (standard
deviation, mean, minimum, and maximum) will be printed in addition to the
individual measurements. If limit testing is enabled (:CALC2:LIMit:STAT ON), an
indication will be printed for the measurements that fail the limit test.

Refer to the sections titled “Using the Print Menu,” and “To Configure the RS-232
Serial Port for Printing” in the Operating Guide for more details on printing.

• Single ASCII-encoded byte, 0 or 1.

• A value of 0 indicates OFF, a value of 1 indicates ON.

*RST: OFF

Save & Print

Query Response

Comments

Related
Front-Panel

Keys

Commands Reference
:INITiate Subsystem

4-44

:INITiate Subsystem
This subsystem controls the initiation of a measurement.

:INITiate:AUTO <Boolean>
Sets or queries if the Counter should stop measurements or continue measuring (go
on) when a measurement exceeds the user-entered limits.

AUTO ON configures the Counter to automatically stop measuring (set
:INIT:CONT to OFF) on a limit test failure (that is, out-of-limit results are
detected). AUTO OFF configures the Counter to continue measuring (leave
:INIT:CONT unaffected) when the limit test fails.

The AUTO ON capability is only meaningful when the Counter is limit testing
(:CALC2:LIM:STAT is ON) and :INIT:CONT is ON.

• Single ASCII-encoded byte, 0 or 1.

• A value of 0 indicates OFF; a value of 1 indicates ON.

*RST: OFF

Limit Modes

:INITiate:CONTinuous <Boolean>
Sets or queries the enable for continuously initiated measurements .

With CONTinuous set to OFF, no measurements are made until CONTinuous is set
to ON or :INITiate[:IMMediate] is received. Once CONTinuous is set to ON, a new
measurement is initiated. On the completion of each measurement, with
CONTinuous ON, another measurement immediately commences.

• Single ASCII-encoded byte, 0 or 1.

• A value of 0 indicates OFF; a value of 1 indicates ON.

• *RST: OFF

• When the :IN IT:CONT ON command is sent, the Counter:
– invalidates the statistics results,
– clears the statistics current count to 0,

Query Response

Comments

Related
Front-Panel

Keys

Query Response

Comments

Commands Reference
:INITiate Subsystem

4-45

– reports the negative status condition (NOT Computing Statistics)
 to bit 8 of Operation Status Register.

• When :CALC2:LIM:CLE:AUTO is ON, the Counter performs the following
whenever the :INIT:CONT ON command is sent:

– invalidates the limit data,
– clears :CALC2:LIM:FAIL, :CALC2:LIM:FCOunt, and
 :CALC2:LIM:PCOunt information,
– turns off the front-panel display's Limit annunciator, and
– sets the Limit-Detect output to the in-limit voltage level.

• When [:SENS]:EVEN:LEV[:ABS]:AUTO is ON and channel 1 is a
measurement channel, the Counter performs an auto-trigger on channel 1
whenever the :INIT:CONT ON command is executed, and also at the beginning
of each measurement cycle while :INIT:CONT is ON.

• The state of :TRIG:COUN:AUTO has no affect on the operation of
:INIT:CONT ON.

• :INIT:CONT ON operates as if :TRIG:COUN was 1.

• The commencement of the first measurement due to setting
:INITiate:CONTinuous to ON sets the Pending Operation Flag to true. The
Pending Operation Flag is set false by aborting of a measurement, or by the
completion of the last measurement after :INITiate:CONTinuous is set OFF.

• With the measurements being made continuously, the :ABORt command shall
abort the current measurement in progress, however, the value of
:INITiate:CONTinuous is unaffected. If CONTinuous was set to ON prior to
receiving :ABORt, it remains ON and a new measurement begins.

• When a single measurem ent is in progress (:INIT:CONT is OFF):

– Error -213 (Init ignored) is generated and the state of INIT:CONT is
unaffected by :INIT:CONT ON.

– Error -210 (Trigger error) is generated by INIT:CONT OFF.

• Note that the Counter powers up with :INIT:CONT set to ON, but *RST sets
:INIT:CONT to OFF.

Commands Reference
:INITiate Subsystem

4-46

Run

:INITiate[:IMMediate]
This event command causes the instrument to initiate either a single measurement
or a block of measurements.

When
:TRIG:COUN:AUTO is OFF, or
:CALC3:AVER[:STAT] is OFF, or
[:SENS]:FUNC[:ON] is any Voltage Peaks function,

then :INIT[:IMM] initiates a single measurement.

When
:TRIG:COUN:AUTO is ON, and
:CALC3:AVER[:STAT] is ON, and
[:SENS]:FUNC[:ON] is not a Voltage Peak function,

then :INIT[:IMM] initiates a complete block of measurements. See
:TRIG:COUN:AUTO for specifics.

• When :TRIG:COUN:AUTO is ON and :CAL3:AVER[:STAT] is ON, the
Counter clears the statistics results and the statistics current count on
:INIT[:IMM].

• If the instrument is already in the process of making a measurement or if
INITiate:CONTinuous is set to ON, an :IMMediate command has no affect,
and an error -213 (Init ignored) is generated.

• When :CALC2:LIM:CLE:AUTO is ON, the Counter performs the following
whenever the :INIT[:IMM] command is sent:
– invalidates the limit data,
– clears :CALC2:LIM:FAIL, :CALC2:LIM:FCOunt, and
 :CALC2:LIM:PCOunt information,
– turns off the front-panel display's Limit annunciator, and
– sets the Limit-Detect output to the in-limit voltage level.

• This command is an overlapped command (se e IEEE 488.2, Section 12).
Beginning a measurement or block of measurements with an
:INITiate[:IMMediate] sets the Pending Operation Flag to true. Completing the
measurement or block of measurements (normally or by aborting) sets Pending
Operation Flag to false.

Related
Front-Panel

Keys

Comments

Commands Reference
:INITiate Subsystem

4-47

• When [:SENS]:EVEN:LEV[:ABS]:AUTO is ON and channel 1 is a
measurement channel, the Counter performs an auto-trigger on channel 1
whenever the :INIT[:IMM] command is executed.

Stop/SingleRelated
Front-Panel

Keys

Commands Reference
:INPut[1] Subsystem

4-48

:INPut[1] Subsystem
This subsystem controls the characteristics of the Counter's input ports. :INPut1
corresponds to the channel 1 input port.

:INPut[1]:ATTenuation 1 | 10
Sets or queries the input attenuation .

Numeric data transferred as ASCII bytes in <NR1> format.

*RST: 1

X10 Attenuate

:INPut[1]:COUPling AC | DC
Sets or queries the input coupling .

A sequence of ASCII-encoded bytes: AC or DC

*RST: AC

DC/AC

:INPut[1]:FILTer[:LPASs][:STATe] <Boolean>
Sets or queries the state of the low-pass filter .

• Single ASCII-encoded by te, 0 or 1.

• A value of 0 indicates OFF; a value of 1 indicates ON.

*RST: OFF

100kHz Filter

Query Response

Comments

Related
Front-Panel

Keys

Query Response

Comments

Related
Front-Panel

Keys

Query Response

Comments

Related
Front-Panel

Keys

Commands Reference
:INPut[1] Subsystem

4-49

:INPut[1]:FILTer[:LPASs]:FREQuency?
Queries the cutoff frequency of the low-pass filter.

• Numeric data transferred as ASCII bytes in <NR3> format with six significant
digits.

• A value of 100E+3 is returned.

Units are Hertz.

:INPut[1]:IMPedance <numeric_value> [OHM]
Sets or queries the input impedance (50Ω or 1MΩ).

50 or 1E6

Numeric data transferred as ASCII bytes in <NR3> format with six significant
digits.

• *RST: 1E6 OHM

• Units are Ohms.

50Ω /1MΩ

Query Response

Comments

<numeric_value>
Range

Query Response

Comments

Related
Front-Panel

Keys

Commands Reference
:INPut2 Subsystem

4-50

:INPut2 Subsystem
This subsystem queries the characteristics of the Counter's
channel 2 input port. These commands are only available if Option 015, Option
030, or Option 050 is installed.

:INPut2:COUPling?
Queries the channel 2 input coupling .

A sequence of ASCII-encoded bytes: AC

This command is only available if Option 030 or 015 is installed.

:INPut2:IMPedance?
Queries the channel 2 input impedance .

Numeric data transferred as ASCII bytes in <NR3> format with six significant
digits.

The value returned is 50, or Not a Number 9.91E37 if Option 030 or 015 Channel
2 is not installed.

• Units are Ohms.

• This command is only available if Option 015, Option 030, or Option 050 is
installed.

Query Response

Comments

Query Response

Comments

Commands Reference
:MEASure Subsystem

4-51

:MEASure Subsystem
Refer to the Measurement Instructions section in this chapter for a description of
:MEASure.

Commands Reference
Measurement Instructions (:CONFigure, :FETCh, :MEASure, :READ)

4-52

Measurement Instructions (:CONFigure,
:FETCh, :MEASure, :READ)
The purpose of these commands is to acquire data using a set of
high-level instructions. These commands are structured to allow you to trade off
interchangeability with fine control of the measurement process. The :MEASure
query provides a complete capability where the instrument is configured, a
measurement is taken, and the results are stored in the Output Queue in one
operation.

When more precise control of the measurement is required, the :CONFigure and
:READ? commands can be used. :CONFigure performs the configuration portion of
the measurement. :READ? performs the data acquisition and post processing (if
any), and then it places the results in the Output Queue. This allows generic
configuration of the instrument using :CONFigure, and then customization of the
measurement with other commands (for example, from the [:SENSe] subsystem).
:READ? completes the measurement process.

The :READ? command, in turn, is composed of the :INITiate[:IMMediate] and
:FETCh? commands. :INITiate[:IMMediate] performs the data acquisition.
:FETCh? performs the post-processing function (if any) and places the result in the
Output Queue. This allows more than one FETCh? on a single set of acquired data.

Summary of the Measurement Instruction Commands

:MEASure query This command is the simplest to use, but allows few additional possibilities. This
command lets the Counter configure itself for an optimal measurement, initiate
measurement, and return the result; that is, it provides complete measurement sequence
(:MEAS query is equivalent to the :CONF, :INIT, :FETC? command sequence, but with no
flexibility.)

:CONFigure
:READ?

The combined use of these two commands allows for more control when the Counter
performs measurement, initiates measurement, and returns the result. Use this command
sequence if you are planning for the Counter to perform something in between the
measurement setup and acquisition.

:CONFigure
:INITiate
:FETCh?

This combination of commands allows for the most flexibility . This command sequence
configures the Counter, initiates the measurement as specified, and returns the result.

The <source_list> parameter has the same syntax as SCPI <channel_list> syntax.
For example, a one-channel function (such as Frequency, Period, etc.) would use

Commands Reference
Measurement Instructions (:CONFigure, :FETCh, :MEASure, :READ)

4-53

(@1) to specify channel 1, whereas a two-channel function (such as Ratio) would
use (@1), (@2) to specify a measurement between Channel 1 and Channel 2.

If the instrument receives a parameter which is unexpected, it shall process the
command, ignoring the unexpected parameter, and set the “Command Warning” bit
of the Data Questionable status reporting structure.

The response format for :MEASure query, :READ?, and :FETCh? is determined by
the :FORMat subsystem. If no valid data is available, error -230 (Data corrupt or
stale) is generated.

See the programming example “Easiest Way to Make a Measurement” in Chapter 3
of this guide.

:CONFigure[:SCALar]:<function> <parameters> [,<source_list>]
Configures the instrument to perform the specified function, but does not initiate the
measurement. Use :INITiate;FETCh? or :READ? to make and query a
measurement.

Parameters (other than <source_list>) may be defaulted from the right by omitting
them, or anywhere by substituting the keyword DEFault. The <source_list>
parameter may be defaulted by omitting it. The default values are specified by the
particular function description.

Note, this command defaults several Counter settings. To simply change the
function, while leaving all other Counter settings as they are, use
[:SENS]:FUNC[:ON] instead.

• Refer to the sub-section in this section title d “Descriptions of the Measurement
Functions” for descriptions of each measurement function.

• Refer to Table 4-1 in this sub-section for a summary of the <function>,
<parameters>, and <source_list> for each of the measurement functions.

• This command disables math, statistics, and limit-testing.

• If channel 1 is specified or defaulted as a measurement channel, then when this
command executes, for functions other than Voltage Peaks (maximum,
minimum, peak-to-peak),

– auto-trigger is enabled,
– auto-trigger level is set,
– auto-trigger is invoked.

:CONFigure?

Comments

Commands Reference
Measurement Instructions (:CONFigure, :FETCh, :MEASure, :READ)

4-54

Queries the function configured by the last :CONFigure or :MEASure query.

If the instrument state has changed through commands other than :CONFigure or
:MEASure query, the instrument will not track these changes, and the query
response will not reflect these changes.

• A string of the form: "<function> <parameters>[,<source_list>]", omitting the
leading colon from the <function>.

• The response is unaffected by *RST, recall, and [:SENS]:FUNC.

• At power-on, this query generates an error and returns an empty string.

• Refer to the sub-section in this section titled “Descriptions of Measurement
Functions” for descriptions of each measurement function.

• Refer to Table 4-1 in this section for a summary of the <function>,
<parameters>, and <source_list> for each of the measurement functions.

Query Response

Comments

Commands Reference
Measurement Instructions (:CONFigure, :FETCh, :MEASure, :READ)

4-55

:FETCh[[:SCALar]:<function>]?
This query returns the measurement taken by the :INITiate (or :MEASure query or
:READ?) commands.

When [:SCALar]:<function> is specified, the instrument will retrieve the specified
result if it matches the current measurement type or can be derived from the current
measurement type. The only functions which can be derived from a different
measurement type are:

• frequency to/from period,

• voltage minimum to/from voltage maximum,

• voltage minimum to/from voltage peak-to-peak, and

• voltage maximum to/from voltage peak-to-peak.

When [:SCALar]:<function> is omitted, the function specified/used by the last
:CONFigure, :MEASure, :READ, or FETCh will be used, if possible. This behavior
is apparent when switching between frequency and period, or when switching
among the voltage peaks functions.

Issuing this query while a measurement is in progress has the effect of holding off
further commands from being processed until the measurement completes. This
hold-off action can only be canceled by the measurement completing, Device Clear,
or power-on.

• Result will be formatted accordi ng to :FORMat[:DATA] ASCii | REAL
setting.

• When ASCii format is used, numeric data is transferred as ASCII bytes in
<NR3> format. The number of significant digits will range from 1 to 15,
depending on the measurement resolution.

• If no valid result exists, Not a Number 9.91E37 is returned and
error -230 is generated.

• Refer to the sub-section in this chapter titled “Descriptions of the Measurement
Functions” for descriptions of each measurement function.

• Refer to Table 4-1 in this section for a summary of the <function>,
<parameters>, and <source_list> for each of the measurement functions.

:MEASure[:SCALar]:<function>? <parameters> [,<source_list>]

Query Response

Comments

Commands Reference
Measurement Instructions (:CONFigure, :FETCh, :MEASure, :READ)

4-56

This query provides a complete measurement sequence: configuration, measurement
initiation, and query for result. It is used when the generic measurement is
acceptable and fine adjustment of Counter settings is unnecessary.

Parameters (other than <source_list>) may be defaulted from the right by omitting
them, or anywhere by substituting the keyword DEFault. The <source_list>
parameter may be defaulted by omitting it. The default values are specified by the
particular function description.

Issuing this query while a measurement is in progress will result in this query
aborting the current measurement before initiating the desired measurement, and
then waiting for the measurement to complete. Consequently, this has the effect of
holding off further commands from being processed until the desired measurement
completes. This hold-off action can only be canceled by the measurement
completing, Device Clear, or power-on.

• Result will be formatted according to :FORMat[:DATA] ASCii | REAL
setting.

• When ASCii format is used, numeric data is transferred as ASCII bytes in
<NR3> format. The number of significant digits will range form 1 to 15,
depending on the measurement resolution.

• Refer to the sub-section in this section titled “Descriptions of the Measurement
Functions” for descriptions of each measurement function.

• Refer to Table 4-1 in this section for a summary of the <function>,
<parameters>, and <source_list> for each of the measurement functions.

• This command disables math , statistics, and limit-testing.

• If channel 1 is specified or defaulted as a measurement channel, then when this
command executes, for functions other than Voltage Peaks (maximum,
minimum, peak-to-peak),

– auto-trigger is enabled,
– auto-trigger level is set,
– auto-trigger is invoked.

:READ[[:SCALar]:<function>]?
This query provides a method of performing a :FETCh? on fresh data.

A common application is to use this command in conjunction with a :CONFigure to
provide a capability like :MEASure? in which the application programmer is

Query Response

Comments

Commands Reference
Measurement Instructions (:CONFigure, :FETCh, :MEASure, :READ)

4-57

allowed to provide fine adjustments to the instrument state by issuing the
corresponding commands between the :CONFigure and :READ?.

When [:SCALar]:<function> is specified, the instrument will retrieve the specified
result if it matches the current measurement type or can be derived from the current
measurement type. The only functions which can be derived from a different
measurement type are:

• frequency to/from period,

• voltage minimum to/from voltage maximum,

• voltage minimum to/from voltage peak-to-peak, and

• voltage maximum to/from voltage peak-to-peak.

When [:SCALar]:<function> is omitted, the function specified/used by the last
:CONFigure, :MEASure, :READ, or FETCh will be used, if possible. This behavior
is apparent when switching between frequency and period, or when switching
among the voltage peaks functions.

Issuing this query while a measurement is in progress will result in this query
aborting the current measurement and idling the measurement cycle before
initiating the desired measurement, and then waiting for the measurement to
complete. Consequently, this has the effect of holding off further commands from
being processed until the desired measurement completes. This hold-off action can
only be canceled by the measurement completing, Device Clear, or power-on.

Commands Reference
Measurement Instructions (:CONFigure, :FETCh, :MEASure, :READ)

4-58

• Result will be formatted according to :FORMat[:DATA] ASCii | REAL
setting.

• When ASCii format is used, numeric data is transferred as ASCII bytes in
<NR3> format. The number of significant digits will range from 1 to 15,
depending on the measurement resolution.

• Refer to the sub-section in this section titled “Descriptions of Measurement
Functions” for descriptions of each measurement function.

• Refer to Table 4-1 for a summary of the <function>, <parameters>, and
<source_list> for each of the measurement functions.

Table 4-1. The <function>, associated <parameters> and <source_list>
for the Measure Instruction Commands

<function> * <parameters> [,<source_list>]**

[:VOLTage]:FREQuency [<expected_value>[,<resolution>]] [(@1) | (@2)]

[:VOLTage]:FREQuency:RATio [<expected_value> [,<resolution>]] [(@1), (@2)] |
[(@2), (@1)]

[:VOLTage]:MAXimum [(@1)]

[:VOLTage]:MINimum [(@1)]

[:VOLTage]:PERiod [<expected_value>[,<resolution>]] [(@1) | (@2)]

[:VOLTage]:PTPeak [(@1)]

* The only functions which can be derived (using FETC? or READ?) from the stored data are
 period to/from frequency, maximum to/from minimum, maximum to/from peak-to-peak, and
 minimum to/from peak-to-peak. Ratio results require an acquisition of the ratio function.

** <source_list> has the same syntax as SCPI <channel _list> syntax. For example, a
 single-channel function (e.g., frequency, period, etc.) would use (@1) to specify channel 1,
 where as a two-channel function (e.g., frequency ratio) would use (@1), (@2) to specify a
 measurement between channel 1 and channel 2.

Query Response

Comments

Commands Reference
Measurement Instructions (:CONFigure, :FETCh, :MEASure, :READ)

4-59

Descriptions of the Measurement Functions— <function>
This sub-section provides a description of each measurement function (that is,
[:VOLTage]:FREQuency, [:VOLTage]:FREQuency:RATio, [:VOLTage]:PERiod,
etc.) that can be used with either the :MEASure query or :CONFigure command.

In each of the following command lines, the MEASure command is used with the
measurement function commands.

:MEASure[:SCALar][:VOLTage]:FREQuency?
[<expected_value>[,<resolution>]][, (@1)|(@2)]
Measures Frequency .

The measurement arming mode is set to “digits.” The Counter uses the
<expected_value> and <resolution> parameters to configure the number of digits of
resolution arming setting.

The Channel 1 trigger settings are coupled so that the measurement channel has
auto-trigger enabled at 50% with a positive slope.

Ch1
<expected_value>

range: .100 Hz to 225 MHz

resolution: <expected value> should be within 10% of input frequency
for optimum arming configuration

default: 10 MHz

Ch1 <resolution>

description: value indicates decade corresponding to least significant
digit of the result

range: 1E-16 to 1E6 Hz

value which indicates 3 to 15 digits of resolution for the
specified <expected value>

resolution: <resolution> should use a mantissa of 1.0 and be an even
power of 10

Descriptions of the Measurement Functions— <function> (Cont.)
:MEASure[:SCALar][:VOLTage]:FREQuency? (Continued)

Commands Reference
Measurement Instructions (:CONFigure, :FETCh, :MEASure, :READ)

4-60

default: value which indicates 4 digits of resolution for the
specified <expected_value>

Ch2 <expected_value>

range, Option 030: 100 MHz to 3.00 GHz

range, Option 015: 100 MHz to 1.50 GHz

resolution: <expected_value> should be within 10% of input
frequency for optimum arming configuration

default: 500 MHz

Ch2 <resolution>

description: value indicates decade corresponding to least significant
digit of the result

range: 1E-7 to1E7 Hz

value which indicates 3 to 15 digits of resolution for the
specified <expected value>

resolution: <resolution> should use a mantissa of 1.0 and be an even
power of 10

default: value which indicates 4 digits of resolution for the
specified <expected_value>

<source_list>

range: (@1) | (@2)

default: (@1)

Commands Reference
Measurement Instructions (:CONFigure, :FETCh, :MEASure, :READ)

4-61

Descriptions of the Measurement Functions— <function> (Cont.)

:MEASure[:SCALar][:VOLTage]:FREQuency:RATio?
[<expected_value>[,<resolution>]]
[, (@1), (@2) | (@2), (@1)]
Measures Frequency Ratio between two inputs.

The measurement arming mode is set to “digits.” The Counter uses the
<expected_value> and <resolution> parameters to configure the number of digits of
resolution arming setting.

The Channel 1 trigger settings are coupled so that the measurement channel has
auto-trigger enabled at 50% with a positive slope.

<expected_value>

range for
Ch1

Ch2
: 1.00E-10 to 1.00E11

range for
Ch2

Ch1
: 1.00E-11 to 1.00E10

resolution: <expected_value> should be within 10% of ratio for
optimum arming configuration

default: 1

<resolution>

description: value indicates decade corresponding to least significant
digit of the result

range for
Ch1

Ch2
: 1E-25 to 1E8

value which indicates 3 to 15 digits of resolution for the
specified <expected>

range for
Ch2

Ch1
: 1E-26 to 1E7

value which indicates 3 to 15 digits of resolution for the
specified <expected>

Descriptions of the Measurement Functions— <function> (Cont.)

:MEASure[:SCALar][:VOLTage]:FREQuency:RATio? (Continued)

Commands Reference
Measurement Instructions (:CONFigure, :FETCh, :MEASure, :READ)

4-62

resolution: <resolution> should use a mantissa of 1.0 and be an even
power of 10

default: value which indicates 4 digits of resolution for the
specified <expected_value>

<source_list>

range: (@1), (@2) | (@2), (@1)

default: (@1), (@2)

:MEASure[:SCALar][:VOLTage]:MAXimum? [(@1)]
Measures Voltage Maximum .

<source_list>

range: (@1)

default: (@1)

:MEASure[:SCALar][:VOLTage]:MINimum? [(@1)]
Measures Voltage Minimum .

<source_list>

range: (@1)

default: (@1)

Commands Reference
Measurement Instructions (:CONFigure, :FETCh, :MEASure, :READ)

4-63

Descriptions of the Measurement Functions— <function> (Cont.)
:MEASure[:SCALar][:VOLTage]:PERiod?
[<expected_value>[,<resolution>]][, (@1)|(@2)]
Measures Period .

The measurement arming mode is set to “digits.” The Counter uses the
<expected_value> and <resolution> parameters to configure the number of digits of
resolution arming setting.

The Channel 1 trigger settings are coupled so that the measurement channel has
auto-trigger enabled at 50% with a positive slope.

Ch1
<expected_value>

range: 4.4 ns to 10.0 sec

resolution: <expected value> should be within 10% of input peroid for
optimum arming configuration

default: 100 ns

Ch1 <resolution>

description: value indicates decade corresponding to least significant
digit of the result

range: 1E-23 to 1E-2 sec

value which indicates 3 to 15 digits of resolution for the
specified <expected value>

resolution: <resolution> should use a mantissa of 1.0 and be an even
power of 10

default: value which indicates 4 digits of resolution for the
specified <expected_value>

Commands Reference
Measurement Instructions (:CONFigure, :FETCh, :MEASure, :READ)

4-64

Descriptions of the Measurement Functions— <function> (Cont.)
:MEASure[:SCALar][:VOLTage]:PERiod? (Continued)

Ch2 <expected_value>

range, Option 030: 0.33 ns to 10.0 ns

range, Option 015: 0.66 ns to 10.0 ns

resolution: <expected_value> should be within 10% of input period
for optimum arming configuration

default: 2 ns

Ch2 <resolution>

description: value indicates decade corresponding to least significant
digit of the result

range: 1E-24 to 1E-11 sec

value which indicates 3 to 15 digits of resolution for the
specified <expected value>

resolution: <resolution> should use a mantissa of 1.0 and be an even
power of 10

default: value which indicates 4 digits of resolution for the
specified <expected_value>

<source_list>

range: (@1) | (@2)

default: (@1)

:MEASure[:SCALar][:VOLTage]:PTPeak? [(@1)]

Measures Peak-to-Peak Voltage .

<source_list>

range: (@1)

default: (@1)

Commands Reference
Measurement Instructions (:CONFigure, :FETCh, :MEASure, :READ)

4-65

Descriptions of the Measurement Functions— <function> (Cont.)

How to Use the Measurement Instruction Commands
The Measure Instruction commands have a different level of compatibility and
flexibility than other commands. The parameters used with commands from the
Measure Instruction describe the signal you are going to measure. This means that
the Measure Instructions give compatibility between instruments since you do not
need to know anything about the instrument you are using.

Using :MEAsure
This is the simplest Measurement Instruction command to use, but it does not offer
much flexibility. :MEASure causes the Counter to configure itself for a default
measurement, starts the measurement, and queries the result. The following
example shows how to use query to measure frequency. Use

:MEASURE:FREQ?

to execute a default frequency measurement and have the result sent to the
controller. The Counter will select settings and carry out the required measurement;
moreover, it will automatically start the measurement and send the result to the
controller.

You may add parameters to give more details about the signal you are going to
measure. Use

:MEASURE:FREQ? 50 MHZ, 1 HZ

where 50 MHz is the expected value, which can of course also be sent as 50E6 HZ,
and 1Hz is the required resolution.

Also the channel numbers can be specified if you send, for example:

:MEASURE:FREQ? (@1)

:MEASURE:FREQ? 50 MHz, 1 HZ, (@1)

Commands Reference
Measurement Instructions (:CONFigure, :FETCh, :MEASure, :READ)

4-66

How to Use the Measurement Instruction Commands (Cont.)
Using :CONFigure with :READ?
The :CONFigure command causes the instrument to choose default settings for the
specified measurement. :READ? starts the measurement and queries the result.

This sequence operates in the same way as the :MEASure query, but now it is
possible to insert commands between :CONFigure and :READ? to specify a
particular setting. For example, use

:CONF:FREQ 5 MHZ, 1HZ

to configure a default frequency measurement where 1 Hz is the required resolution
and 5 MHz is the expected value.

 Use

:SENS:EVEN:LEV 0V

to set the trigger level to 0 Volts.

Use

:READ?

to start the measurement and query the result.

Using :CONFigure with :INITiate and :FETCh?
The :READ? query is composed of the :INITiate command, which starts the
measurement, and the :FETCh? command, which returns the results to the
controller. For example, use

:CONF:FREQ 50 MHZ, 1 HZ

to configure for a default frequency measurement where 1 Hz is the required
resolution and 50 MHz is the expected value.

Commands Reference
Measurement Instructions (:CONFigure, :FETCh, :MEASure, :READ)

4-67

How to Use the Measurement Instruction Commands (Cont.)

Use

:SENS:EVEN:LEV 0V

to set the trigger level to 0 Volts.

Use

:INITIATE

to start the measurement.

Use

:FETCH?

to query for result.

Commands Reference
:MEMory Subsystem

4-68

:MEMory Subsystem
This subsystem manages the instrument's memory . The MEMory capabilities of an
instrument are not part of the instrument state, and are not affected by reset (*RST)
or recall (*RCL). In this instrument, the macro capabilities will not survive a power
cycle, but the *SAV/*RCL states will.

:MEMory:DELete:MACRo <string>
Deletes the macro with the name specified by the string parameter.

The new IEEE 488.2-1992 command *RMC (Remove Macro Command) may also
be used; it performs exactly the same action as :MEMory:DELete:MACRo. Note,
however, that the Counter complies with IEEE 488.2-1987.

• Event; no query.

• See *PMC (page 4- 113) if you want to delete all macros.

:MEMory:FREE:MACRo?
Queries the memory usage and availability corresponding to macro data. A total of
6500 bytes is dedicated to macro memory.

• Numeric data transferred as ASCII bytes in <NR1> format.

• Two numbers transferred a s ASCII bytes in <NR1> format and
comma-separated: <bytes available>, <bytes in use>.

:MEMory:NSTates?
Queries the Number of available *SAV/*RCL STates in the instrument.

• Numeric data transferred as ASCII bytes in <NR1> format.

• The value returned is 21.

• The response value is one greater than the maximum which can be sent as a
parameter to the *SAV and *RCL commands.

Comments

Query Response

Query Response

Commands Reference
[:SENSe] Subsystem

4-69

[:SENSe] Subsystem
The [:SENSe] subsystem commands are divided into several sections. Each section
or subtree deals with controls that directly affect
instrument-specific settings and not those related to the signal-oriented
characteristics.

[:SENSe]:DATA? ["[:]SENSe[1]"]
Queries the current measurement result data of the :SENSe subsystem (no scale or
offset applied).

If this query executes while a measurement is in progress, then the prior
measurement result will be returned, if the prior result has not been invalidated.

• Result will be formatted according to :F ORMat[:DATA] ASCii | REAL
setting.

• When ASCii format is used, numeric data is transferred as ASCII bytes in
<NR3> format. The number of significant digits will range from 1 to 15
depending on the measurement resolution.

• If no valid result exists, Not a Number 9.91E37 is returned and
error -230 is generated.

Query only.

[:SENSe]:EVENt[1] Subtree
This subtree defines the “trigger event.”

For Frequency, this is the event which is counted.

When you are measuring Voltage Peaks, none of the :SENSe:EVENt settings are
used.

[:SENSe]:EVENt[1]:HYSTeresis:RELative <numeric_value> [PCT]
Sets or queries the size of the hysteresis window as a percentage of the allowable
hysteresis. For example, 0% is the minimum hysteresis setting and 100% is the
maximum hysteresis setting.

Specifying 100% or MAXimum provides the greatest noise immunity (lowest
sensitivity), while specifying 0% or MINimum provides the least noise immunity
(most sensitive).

Query Response

Comments

Commands Reference
[:SENSe] Subsystem

4-70

0, 50, or 100 PCT

Numeric data transferred as ASCII bytes in <NR1> format.

*RST: 0 PCT (least noise immunity)

Trigger/Sensitivity

[:SENSe]:EVENt[1]:LEVel[:ABSolute] <numeric_value> [V]
Sets or queries the level at the center of the hysteresis window.

The actual trigger event is at the top of the hysteresis window (for POSitive slope)
or at the bottom of the hysteresis window (for NEGative slope).

• X1 Attenuation: -5.125 to +5.125V

• X10 Attenuation: -51.25 to +51.25V

• X1 Attenuation: .005V

• X10 Attenuation: .05V

Numeric data transferred as ASCII bytes in <NR3> format with six significant
digits.

• Execution of this command turns [:SENS]:EVEN[1]:LEV:AUTO to OFF.

• The query can be used to determine the current trigger level when auto-trigger
is enabled ([:SENS]:EVEN[1]:LEV[:ABS]:AUTO ON). That is, the query
response will indicate what level has automatically been selected.

Trigger/Sensitivity

<numeric_value>
Range

Query Response

Comments

Related
Front-Panel

Keys

<numeric_value>
Range

<numeric_value>
Resolution

Query Response

Comments

Related
Front-Panel

Keys

Commands Reference
[:SENSe] Subsystem

4-71

[:SENSe]:EVENt[1]:LEVel[:ABSolute]:AUTO <Boolean>
Sets or queries the “auto-trigger ” enable.

When AUTO is set to ON, the Counter automatically measures and computes a
trigger level which corresponds to the auto-trigger percentage (specified with
[:SENS]:EVEN[1]:LEV:REL) of the specified channel.

While the enable is set to ON, the Counter will measure and compute the
measurement channel trigger level each time :INIT or :INIT:CONT ON is executed.
Also, for each measurement, while the enable is set to ON, the Counter will check
that the measurement signal(s) are triggering — if no triggering is found, the
Counter will measure and compute new trigger level(s).

• Single ASCII-encoded byte, 0 or 1.

• A value of 0 indicates OFF; a value of 1 indicates ON.

• *RST: ON

• Explicitly selecting a trigger level (with [:SENS]:EVEN[1]:LEV[:ABS]) turns
AUTO OFF.

Trigger/Sensitivity

[:SENSe]:EVENt[1]:LEVel:RELative <numeric_value> [PCT]
Sets or queries the percentage of the peak-to-peak range of the signal at which the
instrument auto triggers .

If [:SENS]:EVEN[1]:LEV[:ABS]:AUTO is ON, then when this command executes,
the Counter automatically measures and computes a trigger level corresponding to
the specified percentage of the specified channel.

0 to 100 PCT

10 PCT

• Numeric data transferred as ASCII bytes in <NR1> format.

Query Response

Comments

Related
Front-Panel

Keys

<numeric_value>
Range

<numeric_value>
Resolution

Query Response

Commands Reference
[:SENSe] Subsystem

4-72

• *RST: 50 PCT

• Only applies when [:SENS]:EVEN[1]:LEV[:ABS]:AUTO is ON.

Trigger/Sensitivity

[:SENSe]:EVENt[1]:SLOPe POSitive | NEGative
Sets or queries which edge of the input signal will be considered an event for
Frequency, Period, and Frequency Ratio measurements .

With the POSitive slope selected, a signal going from one voltage level to a more
positive level, regardless of polarity, will define the event at the upper hysteresis
limit. With the NEGative slope selected, the negative going edge of the signal will
define an event at the lower hysteresis limit.

A sequence of ASCII-encoded bytes: POS or NEG

*RST: POSitive

Trigger/Sensitivity

[:SENSe]:EVENt2 Subtree
This subtree queries the characteristics of the “trigger event ” for
channel 2 input port.

[:SENSe]:EVENt2:LEVel[:ABSolute]?
Queries the trigger level of channel 2 input port.

• Numeric data transferred as ASCII bytes in <NR3> format with six significant
digits.

• The value returned is 0.

Units are Volts.

Comments

Related
Front-Panel

Keys

Query Response

Comments

Related
Front-Panel

Keys

Query Response

Comments

Commands Reference
[:SENSe] Subsystem

4-73

[:SENSe]:EVENt2:SLOPe?
Queries which edge of channel 2 input port will be considered an event.

A sequence of ASCII-encoded bytes: POS

[:SENSe]:FREQuency Subtree
This subtree controls the Frequency, Frequency Ratio, and Period measuring
capabilities of the instrument.

[:SENSe]:FREQuency:ARM Subtree
This subtree is used to synchronize the Frequency, Frequency Ratio, and Period start
and stop arm with events. The following combination of start/stop arming sources
are valid:

STARt:SOURce STOP:SOURce Front-Panel Gating Setttings

 GATE STOP

IMMediate IMMediate AUTO _______

IMMediate TIMer TIME _______

IMMediate DIGits DIGITS _______

EXTernal EXTernal EXTERNAL POS, NEG

EXTernal TIMer EXTERNAL TIME

EXTernal IMMediate EXTERNAL AUTO

[:SENSe]:FREQuency:ARM[:STARt]:SLOPe POSitive | NEGative
Sets or queries the slope of the external start arm signal used in external arming
Frequency, Frequency Ratio, and Period measurements.

A sequence of ASCII-encoded bytes: POS or NEG

• *RST: POSitive

• Only applies when [:SENS]: FREQ:ARM[:STAR]:SOUR EXT is selected.

Gate & ExtArm

Query Response

Query Response

Comments

Related
Front-Panel

Keys

Commands Reference
[:SENSe] Subsystem

4-74

[:SENSe]:FREQuency:ARM[:STARt]:SOURce IMMediate |EXTernal
Sets or queries the start arm for Frequency, Frequency Ratio, and Period
measurements.

A sequence of ASCII-encoded bytes: IMM or EXT

*RST: IMMediate

Gate & ExtArm

[:SENSe]:FREQuency:ARM:STOP:DIGits <numeric_value>
Sets or queries the resolution in terms of digits used in arming Frequency, Period,
and Ratio measurements.

3 to 15

Numeric data transferred as ASCII bytes in <NR1> format.

• *RST: 4

• Only applies when [:SENS]:FREQ:ARM:STOP:SOUR DIG is selected.

Gate & ExtArm

Query Response

Comments

Related
Front-Panel

Keys

<numeric_value>
Range

Query Response

Comments

Related
Front-Panel

Keys

Commands Reference
[:SENSe] Subsystem

4-75

[:SENSe]:FREQuency:ARM:STOP:SLOPe POSitive | NEGative
Sets or queries the slope of the external stop arm signal used in external arming
Frequency, Frequency Ratio, and Period measurements.

A sequence of ASCII-encoded bytes: POS or NEG

• *RST: NEGative

• Only applies when [:SENS]:FREQ:ARM:STOP:SOUR EXT is selected.

Gate & ExtArm

[:SENSe]:FREQuency:ARM:STOP:SOURce IMMediate | EXTernal | TIMer |
DIGits
Sets or queries the stop arm for Frequency, Frequency Ratio, and Period
measurements.

A sequence of ASCII-encoded bytes: IMM, EXT, TIM, or DIG

*RST: TIMer

Gate & ExtArm

[:SENSe]:FREQuency:ARM:STOP:TIMer <numeric_value> [S]
Sets or queries the gate time used in arming Frequency, Frequency Ratio, and
Period measurements.

• For short gate time: 1.00E-3 to 99.99E-3 s econds

• For long gate time: 100E-3 to 1000.000 seconds

• For short gate time: 0.01E-3 seconds

• For long gate time: 1E-3 seconds

Numeric data transferred as ASCII bytes in <NR3> format with six significant
digits.

Query Response

Comments

Related
Front-Panel

Keys

Query Response

Comments

Related
Front-Panel

Keys

<numeric_value>
Range

<numeric_value>
Resolution

Query Response

Commands Reference
[:SENSe] Subsystem

4-76

• *RST: 100E-3 S

• Only applies when [:SENS]:FREQ:ARM:STOP:SOUR TIM is selected.

Gate & ExtArm

[:SENSe]:FREQuency:EXPected[1|2] <numeric_value> [HZ]
Sets or queries the approximate frequency of a signal you expect to measure.
Providing this value enables the Counter to eliminate a
pre-measurement step, saving measurement time and enabling more accurate
arming. This applies to the following measurement functions: Frequency, Period,
and Ratio.

Note that the actual frequency of the input signal must be within 10 % of the
expected frequency value you entered.

• For channel 1, the frequency range is 0.1 to 225E6 HZ

• For channel 2, Option 015, the frequency range is 100E6 to 1.5E9 HZ

• For channel 2, Option 030, the frequency range is 100E6 to 3E9 HZ

• Numeric data transferred as ASCII bytes in <NR3> format with fifteen
significant digits.

• If [:SENS]:FREQ:EXP[1|2]:AUTO is ON, Not a Number 9.91E37 is returned
and error -221 is generated.

This value is unaffected by save/recall.

Comments

Related
Front-Panel

Keys

<numeric_value>
Range

Query Response

Comments

Commands Reference
[:SENSe] Subsystem

4-77

[:SENSe]:FREQuency:EXPected[1|2]:AUTO ON
The command, which only allows the ON parameter, configures the Counter to
perform, as necessary, a pre-measurement step to automatically determine the
approximate frequency of the measurement signal(s). This applies to the following
measurement functions: Frequency, Period, and Ratio.

The query indicates whether or not the above described
pre-measurement step is enabled.

• Single ASCII-encoded byte, 0 or 1.

• A value of 0 indicates OFF; a value of 1 indicates ON.

• *RST: ON

• This value is unaffected by save/recall.

• While the Counter is configured to ON, representative CW signal(s) must be
present at the measurements input(s).

• The ON setting causes the Counter to disregard any previously set “expected
frequency” ([:SENS]:FREQ:EXP[1|2]).

• The only mechanism for disabli ng the above described
pre-measurement step is to specify an expected frequency with
[:SENS]:FREQ:EXP[1|2].

[:SENSe]:FUNCtion[:ON] <sensor_function>
Sets or queries the <sensor_function> to be sensed by the Counter.

The <sensor_function> strings are :

 "[:][XNONe:]FREQuency [1|2]"

 "[:][XNONe:]FREQuency:RATio [1,2 | 2,1]"

 "[:][XNONe:]PERiod [1|2]"

 "[:][XNONe:]VOLTage:MAXimum [1]"

 "[:][XNONe:]VOLTage:MINimum [1]"

 "[:][XNONe:]VOLTage:PTPeak [1]"

Query Response

Comments

Commands Reference
[:SENSe] Subsystem

4-78

• The string "<function> <channel>[,<channel>]" is returned.

• The string omits d efault nodes (XNONe) and uses short form mnemonics. If the
channel specifier(s) are set to default value(s), no channel specifier is returned
in response. If the channel specifier(s) are not set to default value(s), they will
be returned in the response with a single space separating the first channel
specifier from the function name.

For example:

– "FREQ" would be returned for frequency on Channel 1.

– "FREQ 2" would be returned for frequency on Channel 2.

– "FREQ:RAT" would be returned for frequency ratio of Channel 1
 to Channel 2.

– "FREQ:RAT 2,1" would be returned for frequency ratio of
 Channel 2 to Channel 1.

• *RST: "FREQuency 1"

• If the optional channel specification is omitted from the <sensor_function>, a
default channel selection is made. For Frequency, Period, and Voltage Peaks,
the default is Channel 1. For Frequency Ratio the default is Channel 1 to
Channel 2.

• This command has no direct effect on :FETCh?, :READ?, or :CONFigure?

• When the sensor function is Voltage Minimum, Voltage Maximum, or Voltage
Peak-to-Peak, then [:INIT]:IMM always initiates a single measurement.

Freq Ch1, Freq Ch2, Other Meas

Query Response

Comments

Related
Front-Panel

Keys

Commands Reference
[:SENSe] Subsystem

4-79

[:SENSe]:ROSCillator Subtree
This subtree controls the Reference Oscillator .

[:SENSe]:ROSCillator:EXTernal:CHECk ON | OFF | ONCE
Sets or queries the enable for “checking” the validity and presence of the external
reference.

When CHECk is ON and external has been explicitly selected
([:SENS]:ROSC:SOUR is EXT and [:SENS]:ROSC:SOUR:AUTO is OFF), the
Counter checks the external reference signal to ensure that the frequency is 1, 5, or
10 MHz and that the reference is present at measurement completion. When
CHECk is OFF, the external reference signal is not checked at all.

CHECk ONCE is an event which invokes the external reference check at the time
the command is executed. ONCE is only permitted if [:SENS]:ROSC:SOUR is
EXT; otherwise, error -221 is generated. If the CHECk ONCE does not detect a
valid timebase, error +2009 is generated. After the check is completed, this
command's parameter is set to OFF.

A sequence of ASCII-encoded bytes: ON or OFF

• *RST: ON

• Use this command when [:SENS]:ROSC:SOUR EXT has been sent.

• This value is unaffected by save/recall.

[:SENSe]:ROSCillator:EXTernal:FREQuency?
Queries the frequency value of the external reference oscillator.

• Numeric data transferred as ASCII byt es in <NR3> format with six significant
digits.

• Range is 1E6 to 10E6.

• Units are Hertz.

• If the current reference timebase is external but the frequency is not known
(because it is not 1, 5, or 10 MHz and [:SENS]:ROSC:SOUR:AUTO is OFF),
Not a Number 9.91E37 is returned.

• If the current reference timebase is internal, Not a Number 9.91E37 is
returned.

Query Response

Comments

Query Response

Commands Reference
[:SENSe] Subsystem

4-80

Query only.

[:SENSe]:ROSCillator:SOURce INTernal | EXTernal
Sets or queries current reference timebase.

INTernal indicates the timebase is the internal reference. EXTernal indicates the
signal at the external reference input (located on the rear panel of the Counter; Ref
In connector) is the reference timebase.

A sequence of ASCII-encoded bytes: INT or EXT

• Execution of the command (that is, explicitly selecting internal or external
timebase) sets [:SENS]:ROSC:SOUR:AUTO to OFF.

• The query can be used to determine the current reference timebase when
[:SENS]:ROSC:SOUR:AUTO is ON. That is, the query response will indicate
which timebase (internal or external) has automatically been selected.

• This value is unaffected by save/recall.

Utility/POWER

[:SENSe]:ROSCillator:SOURce:AUTO <Boolean>
Sets or queries the enable for automatically selecting a reference timebase.

When AUTO is ON, the Counter will automatically select the external reference
signal as the reference timebase when a valid signal (1, 5, or 10 MHz) is present at
the Ref In rear-panel connector. The internal timebase is used when an invalid
signal is present at this connector.

When AUTO is OFF, the reference timebase is selected with [:SENS]:ROSC:SOUR.

• Single ASCII-encoded byte, 0 or 1.

• A value of 0 indicates OFF; a value of 1 indicates ON .

Comments

Query Response

Comments

Related
Front-Panel

Keys

Query Response

Commands Reference
[:SENSe] Subsystem

4-81

• *RST: ON

• Explicitly selecting a reference oscillator (with [:SENS]:ROSC:SOUR
INT|EXT) sets AUTO to OFF.

• This value is unaffected by save/recal l.

Utility/POWER

Comments

Related
Front-Panel

Keys

Commands Reference
:STATus Subsystem

4-82

:STATus Subsystem
The :STATus subsystem commands allow you to specify or examine the status of
the Operation Status Register group and the Questionable Data/Signal Register
group.

:STATus:OPERation Subtree
The :STATus:OPERation subtree commands allow you to examine the status of the
Counter monitored by the Operation Status Register group, shown in Figure 4-2.
The Operation Status Register group consists of a condition register, two transition
registers, an event register, and an enable register. The commands in this subtree
allow you to control and monitor these registers.

See the section titled “Operation Status Register Group and Questionable
Data/Signal Status Register Group” on page 3-28 in Chapter 3 for a detailed
description of the Operation Status Register Group.

Figure 4-2. The Operation Status Register Group

:STATus:OPERation:CONDition?
Queries the status of the Operation Condition Status Register.

Bits are not cleared when read.

• Numeric data transferred as ASCII bytes in <NR1> format.

• Range is 0 to 65,535.

• The query response value is an integer formed by the binary weighting of the
bits. The value of unused bits is zero.

Query Response

(1)Calibrating 0
Not Used 1 to 3

(16)Measuring 4
Not Used 5 to 7

(256)Computing Statistics 8
(512)Using Internal Reference 9

In Limit Event 10
Not Used 11 to 15

(1024)

Bits

Commands Reference
:STATus Subsystem

4-83

The Operation Condition Status Register is cleared at power-on.

:STATus:OPERation:ENABle <non-decimal numeric> | <NRf>
Sets or queries the Operation Event Status Enable Register.

The parameter and query response value, when rounded to an integer value and
expressed in base 2 (binary), represents the bit values of the Operation Event Status
Enable Register. The value of unused bits is zero when queried and ignored when
set.

This register is used to enable a single or inclusive OR group of Operation Event
Status Register events to be summarized in the Status Byte Register (bit 7).

The range for the <non-decimal numeric> or <NRf> parameter is
0 to 65,535.

Numeric data transferred as ASCII bytes in <NR1> format.

• At power-on and :STAT:PRES, the Operation Event Status Enable Register is
cleared (value is 0).

• This value is unaffected by *RST and save/recall.

:STATus:OPERation[:EVENt]?
Queries the status of the Operation Event Status Register.

The Operation Event Status Register captures changes in conditions by having each
event bit correspond to a specific condition bit in the Operation Condition Status
Register. An event becomes TRUE when the associated condition makes the
transition specified by the transition filters. The event bits, once set, are “sticky.”
That is, they cannot be cleared, even if they do not reflect the current status of a
related condition, until they are read.

• Numeric data transferred as ASCII bytes in <NR1> format.

• Range is 0 to 65,535.

• The query response value is an integer formed by the binary weighting of bits.
The value of unused bits is zero.

Comments

Range

Query Response

Comments

Query Response

Commands Reference
:STATus Subsystem

4-84

The Operation Event Status Register is cleared by *CLS, by
:STAT:OPER[:EVEN]?, and at power-on.

:STATus:OPERation:NTRansition <non-decimal numeric> | <NRf>
Sets or queries the negative transition filter for the Operation status reporting
structure.

The parameter and query response value, when rounded to an integer value and
expressed in base 2 (binary), represents the bit values of the negative transition
filter. The value of unused bits is zero when queried and ignored when set.

A TRUE bit (in the negative transition filter) specifies that a negative (TRUE to
FALSE) transition of the corresponding bit in the Operation Condition Status
Register generates the corresponding event in the Operation Event Status Register.

The range of the <non-decimal numeric> or <NRf> parameter is
0 to 65,535.

Numeric data transferred as ASCII bytes in <NR1> format.

• At power-on and STAT:PRES, the negative transition filter is preset such that
each bit is a 0 (FALSE).

• This value is unaffected by *RST and save/recall.

:STATus:OPERation:PTRansition <non-decimal numeric> | <NRf>
Sets or queries the positive transition filter for the Operation status reporting
structure.

The parameter and query response value, when rounded to an integer value and
expressed in base 2 (binary), represents the bit values of the positive transition filter.
The value of unused bits is zero when queried and ignored when set.

A TRUE bit (in the positive transition filter) specifies that a positive (FALSE to
TRUE) transition of the corresponding bit in the Operation Condition Status
Register generates the corresponding event in the Operation Event Status Register.

The range of the <non-decimal numeric> or <NRf> parameters is
0 to 65,535.

Numeric data transferred as ASCII bytes in <NR1> format.

Comments

Range

Query Response

Comments

Range

Query Response

Comments

Commands Reference
:STATus Subsystem

4-85

• At power-on and STAT:PRES, the positive transition filter is preset such that
each bit is a 1 (TRUE).

• This value is unaffected by *RST and save/recall.

:STATus:PRESet
This event command presets the enable registers and transition filters associated
with the Operation and Questionable status reporting structures. The enable
registers and negative transition filters are preset such that each bit is a 0 (FALSE).
The positive transition filters are preset such that each bit is a 1 (TRUE).

Commands Reference
:STATus Subsystem

4-86

:STATus:QUEStionable Subtree
The :STATus:QUEStionable subtree commands allow you to examine the status of
the Counter monitored by the Questionable Data/Signal Status Register group,
shown in Figure 4-3. The Questionable Status group consists of a condition register,
two transition registers, an event register, and an enable register. The commands in
this subtree allow you to control and monitor these registers.

See the section titled “Operation Status Register Group and Questionable
Data/Signal Status Register Group” on page 3-28 in Chapter 3 for a detailed
description of the Questionable Data/Signal Status Register Group.

Figure 4-3. The Questionable Data/Signal Status Register Group

:STATus:QUEStionable:CONDition?
Queries the status of the Questionable Data Condition Status Register.

Bits are not cleared when read.

• Numeric data transferr ed as ASCII bytes in <NR1> format.

• Range is 0 to 65,535.

• The query response value is an integer formed by the binary weighting of the
bits. The value of unused bits is zero.

The Questionable Data Condition Status Register is cleared at
power-on.

Query Response

Comments

Not Used 0
Not Used 1

(4)Time 2
Not Used 3 and 4

(32)Frequency 5
Not Used 6
Not Used 7

Calibration Error 8
Not Used 9

Out of Limit Event 10
Not Used 11 to 13

Command Warning 14
Not Used 15

(256)

(1024)

(16384)

Bits

Commands Reference
:STATus Subsystem

4-87

:STATus:QUEStionable:ENABle <non-decimal numeric> | <NRf>
Sets or queries the Questionable Data Event Status Enable Register.

The parameter and query response value, when rounded to an integer value and
expressed in base 2 (binary), represents the bit values of the Questionable Data
Event Status Enable Register. The value of unused bits is zero when queried and
ignored when set.

This register is used to enable a single or inclusive OR group of Questionable Data
Event Status Register events to be summarized in the Status Byte Register (bit 3).

The range of the <non-decimal numeric> or <NRf> parameter is
0 to 65,535.

Numeric data transferred as ASCII bytes in <NR1> format.

• At power-on and :STAT:PRES, the Questionable Data Event Status Enable
Register is cleared (value is 0).

• This value is unaffected by *RST and save/recall.

:STATus:QUEStionable[:EVENt]?
Queries the status of the Questionable Data Event Status Register.

The Questionable Data Event Status Register captures changes in conditions by
having each event bit correspond to a specific condition bit in the Questionable Data
Condition Status Register. An event becomes TRUE when the associated condition
makes the transition specified by the transition filters. The event bits, once set, are
“sticky.” That is, they cannot be cleared, even if they do not reflect the current
status of a related condition, until they are read.

The Questionable Data Event Status Register is cleared by *CLS, by
:STAT:QUES[:EVEN]?, and at power-on.

• Numeric data transferred as ASCII bytes in <NR1> format.

• Range is 0 to 65,535.

• The query response value is an integer formed by the binary weighting of bits.
The value of unused bits is zero.

:STATus:QUEStionable:NTRansition <non-decimal numeric> | <NRf>

Range

Query Response

Comments

Query Response

Commands Reference
:STATus Subsystem

4-88

Sets or the negative transition filter for the Questionable Data status reporting
structure.

The parameter and query response value, when rounded to an integer value and
expressed in base 2 (binary), represents the bit values of the negative transition
filter. The value of unused bits is zero when queried and ignored when set.

A TRUE bit (in the negative transition filter) specifies that a negative (TRUE to
FALSE) transition of the corresponding bit in the Questionable Data Condition
Status Register generates the corresponding event in the Questionable Data Event
Status Register.

The range of the <non-decimal numeric> or <NRf> parameter is
0 to 65,535.

Numeric data transferred as ASCII bytes in <NR1> format.

• At power-on and :STAT:PRES, the negative transition filter is preset such that
each bit is a 0 (FALSE).

• This value is unaffected by *RST and save/recall.

:STATus:QUEStionable:PTRansition <non-decimal numeric> | <NRf>
Sets or queries the positive transition filter for the Questionable Data status
reporting structure.

The parameter and query response value, when rounded to an integer value and
expressed in base 2 (binary), represents the bit values of the positive transition filter.
The value of unused bits is zero when queried and ignored when set.

A TRUE bit (in the positive transition filter) specifies that a positive (FALSE to
TRUE) transition of the corresponding bit in the Questionable Data Condition
Status Register generates the corresponding event in the Questionable Data Event
Status Register.

The range of the <non-decimal numeric> or <NRf> parameter is
0 to 65,535.

Range

Query Response

Comments

Range

Commands Reference
:STATus Subsystem

4-89

Numeric data transferred as ASCII bytes in <NR1> format.

• At power-on and :STAT:PRES, the positive transition filter is preset such that
each bit is a 1 (TRUE).

• This value is unaffected by *RST and save/recall.

Query Response

Comments

Commands Reference
:SYSTem Subsystem

4-90

:SYSTem Subsystem
This subsystem collects together the capabilities that are not related to instrument
performance.

:SYSTem:COMMunicate Subtree
The :SYSTem:COMMunicate subtree collects together the configuration of the
control/communication interfaces.

The :SYSTem:COMMunicate:SERial subtree controls the physical configuration of
the RS-232C port. Any command to change the settings takes effect immediately
upon receipt of the “program message termination.” These settings are stored in
non-volatile memory, and are unaffected by power-on, save/recall, and *RST.

The :SYSTem:COMMunicate:SERial:TRANsmit subtree controls parameters
associated with transmission.

The Counter will always use one start bit and one stop bit.

:SYSTem:COMMunicate:SERial:CONTrol:DTR IBFull | ON | LIMit
Sets or queries the hardware pacing scheme.

The ON parameter (which is equivalent to DTR: HIGH in the
front-panel Utility menu) indicates that the DTR (Data Terminal Ready) line, which
is pin 4 of the RS-232 connector , is always asserted
(HIGH) to always be ready to allow data to be sent to the printer. Choose the ON
parameter when the printer or cable you are using does not support handshaking.

The IBFull parameter (which is equivalent to DTR: HW PACE in the front-panel
Utility menu) sets the RS-232 DTR line to indicate when the device is ready to
receive. When the number of received bytes in the input buffer of the Counter
reaches a stop threshold the Counter will de-assert the DTR line. When the number
of bytes has been reduced to a start threshold, the Counter will assert DTR,
indicating that it can receive input again. The Counter will also monitor the state of
the DSR (Data Set Ready) line, which is pin 6 of the RS-232 connector, and will
stop transmission if either of those lines becomes de-asserted. Choose the IBFull
parameter when the printer and cable you are using require handshaking for
counter-to-printer communication.

The LIMit parameter (which is equivalent to DTR: LIMIT in the
front-panel Utility menu) indicates that the RS-232 DTR line will be used to
indicate out of limit. The LIMit parameter will force the DTR line HIGH if the
measurement is in limit, and LOW if the measurement is out of limit.

Commands Reference
:SYSTem Subsystem

4-91

A sequence of ASCII-encoded bytes: IBF, ON, or LIM

• This value is stored in non-volatile memory. It is unaffected by power-on,
save/recall, and *RST.

• The start and stop thresholds are not user configurable.

Utility/POWER

:SYSTem:COMMunicate:SERial:TRANsmit:BAUD <numeric_value>
Sets or queries the baud rate.

The possible BAUD rate values that can be entered for the <numeric_value>
parameter are: 300, 1200, 2400, 9600, 19200.

Numeric data transferred as ASCII bytes in <NR1> format.

This value is stored in non-volatile memory. It is unaffected by
power-on, save/recall, and *RST.

Utility/POWER

Query Response

Comments

Related
Front-Panel

Keys

<numeric_value>
Range

Query Response

Comments

Related
Front-Panel

Keys

Commands Reference
:SYSTem Subsystem

4-92

:SYSTem:COMMunicate:SERial:TRANsmit:PARity[:TYPE] EVEN | ODD |
NONE
Sets or queries the parity scheme.

A sequence of ASCII-encoded bytes: EVEN, ODD, or NONE

• This value is stored in non-volatile memory. It is unaffected by power-on,
save/recall, and *RST.

• If parity is enabled, the Counter sends/receives 7 data bits plus 1 parity bit. If
parity is disabled, the Counter sends/receives 8 data bits.

Utility/POWER

:SYSTem:COMMunicate:SERial:TRANsmit:PACE XON | NONE
Sets or queries the software pacing scheme.

A sequence of ASCII-encoded bytes: XON or NONE

This value is stored in non-volatile memory. It is unaffected by
power-on, save/recall, and *RST.

Utility/POWER

:SYSTem:ERRor?
Queries the oldest error in the Error Queue and removes that error from the queue
(first in, first out).

See page 5-2 in Chapter 5, “Errors,” for detailed error information

• The response is in the following form: <error_number>,"<error_description>"

• The <error_number> is an integer in the range [-32768, 32767]. The negative
error numbers are defined by the SCPI standard; positive error numbers are
particular to this Counter. An error number value of zero indicates that the
Error Queue is empty.

• The maximum length of the <error_description> is 255 characters.

Query Response

Comments

Related
Front-Panel

Keys

Query Response

Comments

Related
Front-Panel

Keys

Query Response

Commands Reference
:SYSTem Subsystem

4-93

• The queue is cleared (emptied) on *CLS, power-on, or upon reading the last
error from queue.

• If the Error Queue overflows, the last error in the queue is replaced with the
error -350, "Queue overflow". Any time the queue overflows, the least recent
errors remain in the queue and the most recent error is discarded. The
maximum length of the Error Queue is 30.

• This query clears any displayed error message from the front-panel di splay, and
stops the front-panel Remote indicator from flashing.

• The Error Queue is unaffected by *RST and save/recall.

Comments

Commands Reference
:SYSTem Subsystem

4-94

:SYSTem:KEY <numeric_value>
This command simulates the pressing or a front-panel key. The <numeric_value> is
a key code value.

This command puts an entry in the Key Queue (just as any front-panel key press
does). The length of the Key Queue is 500.

The keys and their corresponding key codes are listed in the following table.

Key Key Code Key Key Code

Freq Ch1 1 d 20

Freq Ch2 4 f 23

Other Meas 2 s 21

Gate & ExtArm 5 g 22

Uppr &Lower 7 Channel 1 Trigger/Sensitivity 13

Limit Modes 8 Channel 1 50Ω /1MΩ 14

Scale & Offset 10 Channel 1 DC/AC 15

Stats 11 Channel 1 X10 Attenuate 16

Recall(Utility) 3 Channel 1 100kHz Filter 17

Save & Print 6 Display More Digits 18

Run 9 Display Fewer Digits 19

Stop/Single 12

+/- 24

Enter 25

1 to 25

• Numeric data transferred as ASCII bytes in <NR1> format.

• The query returns the key code for the last key pressed. A value of
-1 indicates the queue (last in, first out) is empty.

<numeric_value>
Range

Query Response

Commands Reference
:SYSTem Subsystem

4-95

• At*RST and power-on, the Key Queue is cleared (emptied).

• The Key Queue is unaffected by save/recall.

• Key commands are squential, but only in terms of processing other key
commands or getting into the Key Queue. The operation performed by the key
command is not guaranteed to be complete before processing of the next non-
key command. Be aware of this when intermixing key commands and non-key
commands.

:SYSTem:KEY:LOG?
This query returns a comma separated list of integers representing all of the entries
in the Key Queue.

• Numeric data transferred as ASCII bytes in <NR1> format.

• A value of -1 indicates the queue is empty.

• Numbers (representing key codes) are separated by commas. The key co des
appear in a last in, first out sequence. The maximum number of key codes is
500. Each key code has a range of 1 to 25.

• At *RST and power-on, the Key Queue is cleared (emptied).

• The Key Queue is unaffected by save/recall.

:SYSTem:VERSion?
Queries the SCPI version number with which the Counter complies.

• Numeric data transferred as ASCII bytes in <NR2> format.

• The response is an <NR2> formatted numeric value which has the form
YYYY.V, where YYYY represents the year (1992) and the V represents the
approved version for that year (0).

The instrument complies with SCPI Standard 1992.0 and returns this value as the
response to this query.

Comments

Query Response

Comments

Query Response

Comments

Commands Reference
:TRACe Subsystem

4-96

:TRACe Subsystem
This subsystem provides access to the scale and offset values. The :TRACe
subsystem used in conjunction with the :CALCulate[1] subsystem, scales and offsets
measurement results.

:TRACe:CATalog?
Queries list of intrinsic constants. The Counter has two constants, scale and offset.

A comma-separated list of strings: "SCALE", "OFFSET"

:TRACe[:DATA] OFFSET, <numeric_value> [HZ | S]
 or
:TRACe[:DATA] OFFSET, <arbitrary block>

:TRACe[:DATA]? OFFSET
Sets or queries the offset value.

-9.9999990000E+12 to -1.0000000000E-13, 0.0000000000, +1.0000000000E-13
to +9.9999990000E+12.

11 digits

• Response will be formatted according to :FORMat[:DATA] ASCii | REAL
setting.

• When ASCii format is used, the numeric data is transferred as ASCII bytes in
<NR3> format with eleven significant digits.

• *RST: 0.0000000000

• Updating the offset causes the limit counts (:CALC2:LIM:FCO,
:CALC2:LIM:PCO) to be cleared.

• The front panel menu it em is not always able to display all of the significant
digits of this value. When this is the case, the displayed value is different from
the actual value in that the displayed value has been rounded. However, using
the front panel Enter key, while this value is in the 11-digit display, will
update the actual value to the displayed (rounded) value.

Query Response

<numeric_value>
Range

<numeric_value>
Resolution

Query Response

Comments

Commands Reference
:TRACe Subsystem

4-97

Scale & Offset

:TRACe[:DATA] SCALE, <numeric_value>
 or
:TRACe[:DATA] SCALE, <arbitrary block>

:TRACe[:DATA]? SCALE
Sets or queries the scale value.

-9.999999E+12 to -1.000000E-13, 0.000000, +1.000000E-13 to +9.999999E+12.

7 digits

• Response will be formatted according to :FORMat[:DATA] ASCii | REAL
setting.

• When ASCii format is used, the numeric data is transferred as ASCII bytes in
<NR3> format with eleven significant digits.

• *RST: 1.000000

• Updating the scale causes the limit counts (:CALC2:LIM:FCO,
:CALC2:LIM:PCO) to be cleared.

• The front panel menu item is not always able to display all of the significant
digits of this value. When this is the case, the displayed value is different from
the actual value in that the displayed value has been rounded. However, using
the front panel Enter key, while this value is displayed, will update the actual
value to the displayed (rounded) value.

Scale & Offset

Related
Front-Panel

Keys

<numeric_value>
Range

<numeric_value>
Resolution

Query Response

Comments

Related
Front-Panel

Keys

Commands Reference
:TRIGger Subsystem

4-98

:TRIGger Subsystem
This subsystem enables synchronization of instrument actions with specified
internal or external events.

:TRIGger:COUNt:AUTO <Boolean>
Sets or queries the control over the number of measurements made when
:INITiate[:IMMediate] is performed.

When :TRIG:COUN:AUTO is OFF, then :INIT[:IMM] initiates a single
measurement.

When :TRIG:COUN:AUTO is ON and [:SENS]:FUNC[:ON] is not a Voltage Peak
function, then:

• when statistics are enabled (:CALC3:AVER[:STAT] is ON), :INIT[:IMM] will
initiate a complete block of N (:CALC3:AVER:COUN) valid measurements.

• when statistics are enabled (:CALC3:AVER[:STAT] is ON), and limit-filtering
is enabled (:CALC3:LFIL:STAT is ON), :INIT[:IMM] will initiate a complete
block of N (:CALC3:AVER:COUN) valid,
in-limit measurements.

• when statistics are disabled (:CALC3:AVER[:STAT] is OFF), :INIT[:IMM]
initiates a single measurement.

• Single ASCI I-encoded byte, 0 or 1

• A value of 0 indicates OFF; a value of 1 indicates ON.

• *RST: OFF

• The :TRIG:COUN:AUTO setting has no affect on the operat ion of
:INIT:CONT ON, which always behaves as if :TRIG:COUN is set to 1.

Stats

Query Response

Comments

Related
Front-Panel

Keys

Commands Reference
*CAL?
(Calibration Query)

4-99

*CAL?
(Calibration Query)
This query causes an internal interpolator self-calibration.

• Numeric data transferred as ASCII bytes in <NR1> format.

• A value of zero indicates the calibration completed without error. A value of
one indicates the calibration completed with error.

Query Response

Commands Reference
*CLS
(Clear Status Command)

4-100

*CLS
(Clear Status Command)
Clears all event registers summarized in the status byte (Standard Event Status
Register, Operation Event Status Register, and Questionable Data Event Status
Register) and clears the Error Queue. The *CLS command will not clear data
memories or any other settings.

It also places the instrument in “Operation Complete Idle State” and “Operation
Complete Query Idle State” (IEEE 488.2). This results in the disabling of any prior
*OPC command.

If *CLS immediately follows a program message terminator, the output queue and
the MAV bit are cleared because any new program message after a program
message terminator clears the output queue.

This command will clear any displayed error message from the front panel, and
stops the front-panel Remote indicator from flashing.

Commands Reference
*DDT <arbitrary block>
(Define Device Trigger Command)

4-101

*DDT <arbitrary block>
(Define Device Trigger Command)
Sets or queries the command that the device will execute when it receives the IEEE
488.1 Group Execute Trigger (GET) interface message (page 4- 42) or a *TRG
common command.

There are only three valid commands that the Counter will accept:
:INITiate[:IMMediate], :READ?, or :FETCh?; otherwise, error -224 is generated. If
a zero-length <arbitrary block> is specified as the parameter, the Counter will do
nothing when it receives a GET or *TRG command.

• Definite length block

• The query response will be one of the following:

#14INIT
#15FETC?
#15READ?
#0

terminated with a new line and EOI.

• *RST: #14INIT

• When defining the device trigger to :FETCh? or :READ?, note that these
definitions do not allow the specification of a particular function. This lack of a
function specification results in each *DDT using the function specified/used by
the last :CONFigure, :FETCh, :READ, or :MEASure command, if possible.

Query Response

Comments

Commands Reference
*DMC <string>, <arbitrary block>
(Define Macro Command)

4-102

*DMC <string>, <arbitrary block>
(Define Macro Command)
This command assigns a sequence of zero or more commands/queries to a macro
label. The sequence is executed when the label is received as a command or query.

The <string> parameter specifies the macro label. The macro label may not be a
common command/query header. It may be the same as an instrument-specific
command/query header; in this case, provided macros are enabled, the macro
expansion is executed and the instrument-specific command/query may be executed
by disabling macros.

The <arbitrary block> contains the sequence of commands/queries being labeled.

Parameters may be passed to the sequence during execution. Placeholders for
parameters appear in the sequence as a dollar sign followed by a single digit in the
range one to nine inclusive. The first parameter following the macro label is
substituted for the parameter placeholder labeled $1, and so on up to nine
parameters.

See the section titled “How to Program the Counter to Define Macros” in Chapter 3
of this guide.

• The maximum macro label length is 12 characters.

• Redefining an existing macro causes an execution error.

• The Counter allows up to four levels of recursion.

• There is no query form. Use *GMC? (see page 4- 107) to query the current
definition of a macro label.

Comments

Commands Reference
*EMC <NRf>
(Enable Macro Command)

4-103

*EMC <NRf>
(Enable Macro Command)
*EMC?
(Enable Macro Query)
Sets or queries the Enable for defined MaCros .

Macro definitions are not affected by this command. One use of this command is to
turn off macro expansion in order to execute an instrument-specific command with
the same name as a macro.

The value of the numeric parameter determines whether the defined macros are
enabled or disabled. A value that rounds to an integer value of zero disables any
defined macros. A value that rounds to an integer value not equal to zero enables
any defined macros.

-32767 to +32767

1

• Single ASCII-encoded byte, 0 or 1.

• A value of zero indicates that macros are disabled and a value of one indicates
that macros are enabled.

• *RST: 0 (disabled)

• This value is unaffected by save/recall.

• Macros are disabled at power-on.

<NRf> Range

<NRf> Resolution

Query Response

Comments

Commands Reference
*ESE <NRf>
(Standard Event Status Enable Command)

4-104

*ESE <NRf>
(Standard Event Status Enable Command)
*ESE?
(Standard Event Status Enable Query)
Sets or queries the Standard Event Status Enable Register, shown in Figure 4-4.

The parameter and query response value, when rounded to an integer value and
expressed in base 2 (binary), represents the bit values of the Standard Event Status
Enable Register. The value of unused bits is zero when queried and ignored when
set.

This register is used to enable a single or inclusive OR group of Standard Event
Status Register events to be summarized in the Status Byte Register (bit 5).

Figure 4-4. The Standard Event Status Enable Register

See the section titled “Standard Event Status Register Group,”
page 3-25, in Chapter 3 of this guide for a detailed description of the Standard
Event Status Register.

0 to 255

1

Numeric data transferred as ASCII bytes in <NR1> format.

• At power-on, the Standard Event Status Enable Register is cleared (value is 0).

<NRf> Range

<NRf> Resolution

Query Response

Comments

(1)
Operation Complete

Not Used
(4)

Query Error 2
(8)

Device Dependent Error 3
(16)

Execution Error 4
(32)

Command Error 5
Not Used 6

(128)
Power On 7

Bits
0
1

Commands Reference
*ESE?
(Standard Event Status Enable Query)

4-105

• This value is unaffected by *RST and save/recall.

Commands Reference
*ESR?
(Event Status Register Query)

4-106

*ESR?
(Event Status Register Query)
Queries the Standard Event Status Register, shown in Figure 4-5.

This event register captures changes in conditions, by having each event bit
correspond to a specific condition in the instrument. An event becomes TRUE when
the associated condition makes the defined transition. The event bits, once set, are
“sticky.” That is, they cannot be cleared even if they do not reflect the current status
of a related condition, until they are read.

This register is cleared by *CLS, by *ESR?, and at power-on. Note that the
instrument's power-on sequence initially clears the register, but then records any
subsequent events during the power-on sequence including setting the PON (power
on) bit.

Figure 4-5. Standard Event Status Register

See the section titled “Standard Event Status Register Group,”
page 3-25, in Chapter 3 of this guide for a detailed description of the Standard
Event Status Register.

• Numeric data transferred as ASCII bytes in <NR1> format.

• Range is 0 to 255.

• The query response is an integer formed by the binary-weighting of the bits.
The value of unused bit is zero.

Query Response

(1)
Operation Complete

Not Used
(4)

Query Error 2
(8)

Device Dependent Error 3
(16)

Execution Error 4
(32)

Command Error 5
Not Used 6

(128)
Power On 7

Bits
0
1

Commands Reference
*GMC? <string>
(Get Macro Contents Query)

4-107

*GMC? <string>
(Get Macro Contents Query)
Queries the current definition of a macro.

The <string> parameter must be a currently defined macro label.

• Definite length block.

• The query response is a <definite length block> containing the command/query
sequence which is executed when the macro label is received.

• A zero-length block response indicates that no command sequence is stored by
the specified label.

Query Response

Commands Reference
*IDN?
(Identification Query)

4-108

*IDN?
(Identification Query)
Queries the Counter identification.

A sequence of ASCII-encoded bytes:

HEWLETT-PACKARD, 53181A,0,XXXX

terminated with a new line and EOI.

XXXX represents the firmware date code .

This query should be the last query in a terminated program message; otherwise,
error -440 is generated.

Query Response

Comments

Commands Reference
*LMC?
(Learn Macro Query)

4-109

*LMC?
(Learn Macro Query)
Queries the currently defined macro labels.

• A sequence of one or more strings separated by commas.

• If no macros are defined, the response is a null string (two consecutive double
quote marks).

Query Response

Commands Reference
*OPC
(Operation Complete Command)

4-110

*OPC
(Operation Complete Command)
This event command enables the OPC bit (bit 0) in the Standard Event Status
Register to be set upon the transition of the measurement cycle from measuring to
idle. See the section titled “Standard Event Status Register Group,” page 3-25, in
Chapter 3 of this guide for a detailed description of the Standard Event Status
Register's Operation Complete bit.

This event command is “disabled” by *CLS, *RST, Device Clear
(page 4-31), power-on, or upon the transition of the measurement cycle from
measuring to idle.

This event command has no query form.

See the section titled “Using the *OPC Command to Assert SRQ,”
page 3-50, in Chapter 3 for an example using this command.

Commands Reference
*OPC?
(Operation Complete Query)

4-111

*OPC?
(Operation Complete Query)
This query produces a response upon the transition of the measurement cycle from
measuring to idle. This allows synchronization between a controller and the
instrument using the MAV bit in the Status Byte Register or a read of the Output
Queue. (Note that this query does not actually “read” a state, as most queries do.)

Since this query will not respond until the measurement cycle transitions from
measuring to idle, the only way to cancel the query “holdoff” is by Device Clear
(page 4-31) or power-on.

See the section titled “Using the *OPC? Command,” page 3-49, in Chapter 3 for an
example using this command.

Single ASCII-encoded byte, 1.

The *OPC? query does not in any way affect the OPC bit in the Standard Event
Status Register.

Query Response

NOTE

Commands Reference
*OPT?
(Option Identification Query)

4-112

*OPT?
(Option Identification Query)
Queries the instrument to identify any installed options.

The following options can be installed in the instrument:

• Option 001, Medium Stability Oven Timebase

• Option 010, High Stability Oven Timebase

• Option 012, Ultra High Stability Oven Timebase

• Option 015, 1.5 GHz RF Input Channel (Channel 2)

• Option 030, 3.0 GHz RF Input Channel (Channel 2)

• Option 050, 5.0 GHz RF Input Channel (Channel 2)

• A sequence of ASCII-encoded bytes, indicating

 <timebase option>, <high frequency RF Input option>

terminated with a new line and EOI.

– The <timebase option> is 0, 001, or 010 or 012.

– The <high frequency RF Input option> is 015, 030, or 0.

Note that the counter responds with 030 for either the 3.0 GHz or 5.0 GHz RF
Input option.

– A missing option is identified by an ASCII 0 (zero).

For example, if only the medium stability timebase option is detected, the response
would be: 001,0.

This query should be the last query in a terminated program message; otherwise,
error -440 is generated.

Query Response

Comments

Commands Reference
*PMC
(Purge Macro Command)

4-113

*PMC
(Purge Macro Command)
The Purge MaCros command deletes all macros previously defined using the *DMC
command.

Commands Reference
*RCL <NRf>
(Recall Command)

4-114

*RCL <NRf>
(Recall Command)
This command restores the state of the instrument from a copy stored in local non-
volatile memory. Before the recall occurs the current state of the instrument is
automatically saved to register 0.

0 to 20

1

The following commands/states are unaffected by *RCL:

*EMC
*ESE
*OPC
*OPC?
*SRE
*WAI
:CALibration:COUNt?
:CALibration:DATA
:CALibration:SECurity:CODE
:CALibration:SECurity:STATe
:CONFigure?
:DIAGnostic:CALibration:INTerpolator:AUTO
:DISPlay:ENABle
:DISPlay:MENU[:STATe]
:DISPLay[:WINDow]:TEXT:RADix
[:SENSe]:FREQuency:EXPected[1|2]
[:SENSe]:FREQuency:EXPected[1|2]:AUTO
[:SENSe]:ROSCillator:EXTernal:CHECk
[:SENSe]:ROSCillator:SOURCe
[:SENSe]:ROSCillator:SOURCe:AUTO
:STATus:OPERation:ENABle
:STATus:OPERation:NTRansition
:STATus:OPERation:PTRansition
:STATus:QUEStionable:ENABle
:STATus:QUEStionable:NTRansition
:STATus:QUEStionable:PTRansition
:SYSTem:COMMunicate:SERial:CONTrol:DTR

<NRf> Range

<NRf> Resolution

Comments

Commands Reference
*RCL <NRf>
(Recall Command)

4-115

:SYSTem:COMMunicate:SERial:TRANsmit:BAUD
:SYSTem:COMMunicate:SERial:TRANsmit:P ACE
:SYSTem:COMMunicate:SERial:TRANsmit:PARity[:TYPE]
:SYSTem:ERRor? (error queue)
:SYSTem:KEY? (key queue)
:SYSTem:KEY:LOG? (key queue)
GPIB Address

Commands Reference
*RST
(Reset Command)

4-116

*RST
(Reset Command)
This event command performs an instrument reset .

The reset performs the following:

• sets instrument settings to their *RST states,

• disables macros,

• places instrument in “Operation Complete Idle State” and “Operation
Complete Query Idle State,” and

• clears (empties) the Key Queue

The reset does not affect:

• the macros defined with *DMC,

• the calibration data,

• the Service Register Enable or the Standard Event Status Enable,

• the Output Queue, and

• the IEEE 488.1 address or the state of the IEEE 488.1 interface.

See the section titled “*RST Response,” page 2-32, in Chapter 2 of this guide for a
complete listing of the *RST state.

Each command description in this chapter (Chapter 4) includes the *RST state in
the “Comment” portion of the definition.

Commands Reference
*SAV <NRf>
(Save Command)

4-117

*SAV <NRf>
(Save Command)
This command stores the current state of the instrument in local
non-volatile memory .
The current instrument state is saved in register 0 when *RCL or
front-panel recall is executed.

1 to 20

1

The following states are not saved:

*EMC
*ESE
*OPC
*SRE
:CALibration:COUNt?
:CALibration:DATA
:CALibration:SECurity:CODE
:CALibration:SECurity:STATe
:CONFigure? response
:DIAGnostic:CALibration:INTerpolator:AUTO
:DISPlay:ENABle
:DISPlay:MENU[:STATe]
:DISPLay[:WINDow]:TEXT:RADix
:FETCh? implied function
:READ? implied function
[:SENSe]:FREQuency:EXPected[1|2]
[:SENSe]:FREQuency:EXPected[1|2]:AUTO
[:SENSe]:ROSCillator:EXTernal:CHECk
[:SENSe]:ROSCillator:SOURCe
[:SENSe]:ROSCillator:SOURCe:AUTO
:STATus:OPERation:ENABle
:STATus:OPERation:NTRansition
:STATus:OPERation:PTRansition
:STATus:QUEStionable:ENABle
:STATus:QUEStionable:NTRansition
:STATus:QUEStionable:PTRansition

<NRf> Range

<NRf> Resolution

Comments

Commands Reference
*SAV <NRf>
(Save Command)

4-118

:SYSTem:COMMunicate:SERial:CONTrol:DTR
:SYSTem:COMMunicate:SERial:TRANsmit:BAUD
:SYSTem:COMMunicate:SERial:TRANsmit:PACE
:SYSTem:COMMunicate:SERial:TRANsmit:PARity[:TYPE]
GPIB Address
Error Queue
Key Queue

Commands Reference
*SRE <NRf>
(Service Request Enable Command)

4-119

*SRE <NRf>
(Service Request Enable Command)
*SRE?
(Service Request Enable Query)
Sets or queries the Service Request Enable Register , shown in
Figure 4-6.

The parameter and query response value, when rounded to an integer value and
expressed in base 2 (binary), represents the bit values of the Service Request Enable
Register.

This register is used to enable a single or inclusive OR group of Status Byte Register
events to generate an SRQ.

Figure 4-6. The Service Request Enable Register

See the section titled “Status Byte Register and Service Request Enable Register,”
page 3-22, in Chapter 3 of this guide for a detailed description of the Service
Request Enable Register.

• 0 to 255

• The value of bit 6 and unused bits is ignor ed when set.

1

• Numeric data transferred as ACSII bytes in <NR1> format.

• The value of bit 6 and unused bits is zero when queried.

• At power-on, this value is cleared (set to 0).

• This value is unaffected by *RST and save/recall.

<NRf> Range

<NRf> Resolution

Query Response

Comments

Not
Used 0 to 2

3
(16)

4
(32)

5
(64)

6
(128)

7

(8)

Bits

MAV
ESB

RQS/MSS
OSB

QSB

Commands Reference
*STB?
(Status Byte Query)

4-120

*STB?
(Status Byte Query)
Queries the Status Byte Register , shown in Figure 4-7.

This register is cleared at power-on.

This query does not directly alter the Status Byte Register (including the MSS/RQS
bit) or anything related to the generation of SRQ.

Figure 4-7. The Status Byte Register

See the section titled “Status Byte Register and Service Request Enable Register,”
page 3-22, in Chapter 3 of this guide for a detailed description of the Status Byte
Register.

• Numeric data transferred as ASCII bytes in <NR1> format.

• Range is 0 to 255.

• The response value when rounded to an int eger value and expressed in base 2
(binary), represents the bit values of the Status Byte Register.

• The value of unused bits is zero when queried.

• The Master Summary Status, not the RQS me ssage, is reported on bit 6. Master
Summary Status indicates that the Counter has at least one reason for
requesting service. (The Master Summary Status is not sent in response to a
serial poll; the IEEE 488.1 RQS message is sent instead.) It is the inclusive OR
of the bitwise combination (excluding bit 6) of the Status Byte Register and the
Service Request Enable Register.

Query Response

Not
Used 0 to 2

3
(16)

4
(32)

5
(64)

6
(128)

7

(8)

Bits

MAV
ESB

RQS/MSS
OSB

QSB

Commands Reference
*TRG
(Trigger Command)

4-121

*TRG
(Trigger Command)
This command is the device-specific analog of the IEEE 488.1 Group Execute
Trigger (GET) interface message (page 4- 42), and has exactly the same effect.

The *TRG command will perform the action defined by the *DDT command (page
4-101).

Commands Reference
*TST?
(Self-Test Query)

4-122

*TST?
(Self-Test Query)
This query causes an internal self-test and the response indicates whether any errors
were detected.

Error -330 is generated when the self-test fails.

• Numeric data transferred as ACSII bytes in <NR1> format.

• A response value of zero indicates the self-test has completed without errors
detected, while a non-zero value indicates the self-test was not completed or
was completed with errors detected.

The following are tested:

CPU,
ROM,
RAM,
EEPROM,
QSPI,
FPGA,
Front End,
Measurement hardware, and
Interpolator hardware.

Query Response

Comments

Commands Reference
*WAI
(Wait-to-Continue Command)

4-123

*WAI
(Wait-to-Continue Command)
This command prevents the instrument from executing any further commands or
queries until the measurement cycle transitions from measuring to idle. The only
way to cancel this “holdoff” is by device clear or power-on. (*RST and *CLS have
no affect on *WAI operation.)

See the section titled “Using the *WAI Command,” page 3-48, in
Chapter 3 for an example using this command.

Commands Reference
*WAI
(Wait-to-Continue Command)

4-124

5

Errors

Errors
Introduction

5-2

Introduction
This chapter explains how to read any errors from the Counter, discusses the types
of errors, and provides a table of all of the Counter's errors and their probable
causes.

Displaying Errors

panel display, where XXX indicates the error number found in Table 5-2.

If an error occurs while the Counter is in remote, the front-panel Remote indicator
flashes until the error queue is read or cleared.

The front-panel error messages are most easily seen if the Counter is in Single
(:INIT:CONT OFF) or in the menu display mode. (When the Counter is configured
to display measurement results, the measurements will overwrite the GPIB error
messages.)

Reading an Error
Executing the :SYSTem:ERRor? command reads the oldest error from the error
queue and erases that error from the queue. The :SYST:ERR? response has the
form:

<error number>, <error string>

An example response is:

-113,"Undefined header"

Positive error numbers are specific to the Counter. Negative error numbers are
command language related and are discussed later in this chapter.

All errors set a corresponding bit in the Standard Event Status Register (see the
section titled “Standard Event Status Register Group” on
page 3-25 of Chapter 3).

The following short program reads all errors (one at a time, oldest to newest) from
the error queue. After each error is read, it is automatically erased from the error
queue. When the error queue is empty (that is, all errors have been read from the
queue), further queries return the +0,"No error" response.

When an GPIB error is detected, the GPIB XXX message will appear on the front-

Errors
Error Queue

5-3

10 ASSIGN @Cntr TO 703
20 !Assign path name
30 DIM Err_string$[255]
40 !Creates array for error string
50 REPEAT
60 !Repeats until error queue is empty
70 OUTPUT @Cntr;"SYST:ERR?"
80 !Read error number and string
90 ENTER @Cntr;Err_num,Err_string$
100 !Enter error number and string
110 PRINT Err_num,Err_string$
120 !Print error number and string
130 UNTIL Err_num = 0
140 END

Error Queue
As errors are detected, they are placed in an error queue. This queue is first in, first
out. That is, if there has been more than one error, the first one in the queue is read
out with :SYST:ERR?. Subsequent responses continue until the queue is empty.

If the error queue overflows, the last error in the queue is replaced with error − 350,
"Queue overflow" . Any time the queue overflows, the least recent errors remain
in the queue, and the most recent error is discarded. The length of the Counter's
error queue is 30 (29 positions for the error messages, and 1 position for the “Queue
overflow” error). Reading an error from the head of the queue removes that error
from the queue, and opens a position at the tail of the queue for a new error, if one
is subsequently detected.

When all errors have been read from the queue, further error queries return +0,
"No error".

The error queue is cleared when any of the following occur:

• Upon power-on.

• Upon receipt of a *CLS command.

• Upon reading the last item from the queue.

Errors
Error Types

5-4

Error Types
Error numbers are categorized by type as shown in Table 5-1. Each and every error
is listed in Table 5-2.

Table 5-1. Error Types

Error Number Error Type

+0 No Error

− 100 to − 199 Command Errors

− 200 to − 299 Execution Errors

− 300 to − 350 Device-Specific Errors

− 400 to − 499 Query Errors

+2000 to +2013 Counter-Specific Errors

The first error described in each class (for example, -100, -200, -300,
-400) is a “generic” error.

No Error
The :SYST:ERR? response +0, "No error" indicates that the Counter has no
errors. The error queue is empty when every error in the queue has been read
(:SYST:ERR? query) or the queue was cleared by power-on or *CLS.

Command Error
An <error number> in the range [− 100 to − 199] indicates that an IEEE 488.2
syntax error has been detected by the Counter's parser. The occurrence of any error
in this class causes the command error bit (bit 5) in the Event Status Register to be
set. One of the following events has occurred:

• An IEEE 488.2 syntax error has been detected by the parser. That is, a
controller-to-Counter message was received that is in violation of the IEEE
488.2 Standard. Possible violations include a data element that violates the
Counter listening formats or whose type is unacceptable to the Counter.

• An unrecognized header was received. Unrecognized headers include incorrect
Counter-specific headers and incorrect or unimplemented IEEE 488.2 Common
Commands.

Errors
Error Types

5-5

• A Group Execute Trigger (GET) was entered into the input buffer inside of an
IEEE 488.2 program message.

Events that generate command errors do not generate execution errors, device-
specific errors, or query errors.

Execution Error
An <error number> in the range [− 200 to − 299] indicates that an error has been
detected by the Counter's execution control block. The occurrence of any error in
this class causes the execution error bit (bit 4) in the Event Status Register to be set.
One of the following events has occurred:

• A <PROGRAM DATA> element following a header was evaluated by the
Counter as outside of its legal input range or is otherwise inconsistent with the
Counter's capabilities.

• A valid program message could not be properly executed due to some Counter
condition.

Execution errors are reported by the Counter after rounding and expression
evaluation operations have been taken place. Rounding a numeric data element, for
example, is not reported as an execution error. Events that generate execution errors
do not generate command errors, device-specific errors, or query errors.

Device- or Counter-Specific Error
An <error number> in the range [− 300 to − 399] or [+1 to +32767] indicates that
the Counter has detected an error that is not a command error, a query error, or an
execution error; some Counter operations did not properly complete, possibly due to
an abnormal hardware or firmware condition. These codes are also used for self-test
response errors. The occurrence of any error in this class causes the device-specific
error bit (bit 3) in the Event Status Register to be set.

Errors
Error Types

5-6

Query Error
An <error number> in the range [− 400 to − 499] indicates that the output queue
control of the Counter has detected a problem with the message exchange protocol.
The occurrence of any error in this class should cause the query error bit (bit 2) in
the Event Status Register to be set. One of the following is true:

• An attempt is being made to read data from the output queue when no output is
either present or pending.

• Data in the output queue has been lost.

Errors
Error Types

5-7

Table 5-2. Errors

Number Error String Cause

 +0

-100

-101

-102
-103
-104

-105
-108
-109
-112

-113

-120

-121

-123
-124

-128

-131

-134
-138

-141
-148

-150

No error

Command error

Invalid character

Syntax error
Invalid separator
Data type error

GET not allowed
Parameter not allowed
Missing parameter
Program mnemonic too long

Undefined header

Numeric data error

Invalid character in number

Exponent too large
Too many digits

Numeric data not allowed

Invalid suffix

Suffix too long
Suffix not allowed

Invalid character data
Character data not allowed

String data error

The error queue is empty. Every error in the queue has been read
(:SYSTem:ERRor? query) or the queue was cleared by power-on or *CLS.
This is the generic syntax error used if the Counter cannot detect more specific
errors.
A syntactic element contains a character that is invalid for that type. For
example, a header containing an ampersand, :INP:COUP& AC.
An unrecognized command or data type was encountered.
The parser was expecting a separator and encountered an illegal character.
The parser recognized a data element different than one allowed. For example,
numeric or string data was expected, but block data was received.
A Group Execute Trigger was received within a program message.
More parameters were received than expected for the header.
Fewer parameters were received than required for the header.
The header or character data element contains more than twelve characters.
The header is syntactically correct, but it is undefined for the Counter. For
example, *XYZ is not defined for the Counter.
This error, as well as errors -121 through -129, are generated when parsing a
data element which appears to be numeric, including the non-decimal numeric
types. This particular error message is used when the Counter cannot detect a
more specific error.
An invalid character for the data type being parsed was encountered. For
example, a “9” in octal data.
Numeric overflow.
The mantissa of a decimal numeric data element contained more than 255
digits excluding leading zeros.
A legal numeric data element was received, but the Counter does not accept
one in this position for the header.
The suffix does not follow the syntax described in IEEE 488.2 or the suffix is
inappropriate for the Counter.
The suffix contained more than 12 characters.
A suffix was encountered after a numeric element that does not allow suffixes.
The character data element contains an invalid character.
A legal character data element was encountered where prohibited by the
Counter.
This error can be generated when parsing a string data element. This particular
error message is used if the Counter cannot detect a more specific error.

Errors
Error Types

5-8

Table 5-2. Errors (Continued)

Number Error String Cause

-151

-158

-160

-161

-168

-170

-171

-178

-181

-183

-200

-210

-211

-213

-220

-221

-222

-223

Invalid string data

String data not allowed

Block data error

Invalid block data

Block data not allowed

Expression error

Invalid expression

Expression data not allowed

Invalid outside macro definition

Invalid inside macro definition

Execution error

Trigger error

Trigger ignored

Init ignored

Parameter error

Settings conflict

Data out of range

Too much data

A string data element was expected but was invalid for some reason. For
example, an END message was received before the terminal quote character.
A string data element was encountered but was not allowed by the Counter at
this point in parsing.
This error can be generated when parsing a block data element.
This particular error message is used if the Counter cannot detect a more
specific error.
A block data element was expected, but it was not allowed by the Counter at
this point in parsing.
A legal block data element was encountered but was not allowed by the
Counter at this point in parsing.
This error can be generated when parsing an expression data element. It is
used if the Counter cannot detect a more specific error.
The expression data element was invalid (see IEEE 488.2). For example,
unmatched parentheses or an illegal character.
Expression data was encountered but was not allowed by the Counter at this
point in parsing.
Indicates that a macro parameter placeholder ($<number>) was encountered
outside of a macro definition.
Indicates that the program message unit sequence, sent with a *DMC
command, is syntactically invalid.
This is the generic syntax error if the Counter cannot detect more specific
errors. This code indicates only that an Execution Error has occurred.
Used if the Counter cannot detect a more specific error from the :INIT, :TRIG,
or :ABOR subsystems.
Indicates that a GET or *TRG was received and recognized by the Counter but
was ignored.
Indicates that a request for a measurement initiation was ignored as another
measurement was in progress.
Indicates that a program data element related error occurred. This error is used
when the Counter cannot detect more specific errors.
Indicates that a legal program data element was parsed but could not be
executed due to the current Counter state.
Indicates that a legal program data element was parsed but could not be
executed because the interpreted value is outside the legal range defined by
the Counter. Typically, the value is clipped to legal limit.
Indicates that a legal program data element of block, expression, or string type
was received that contained more data than the Counter could handle due to
memory or related Counter-specific requirements.

Errors
Error Types

5-9

Table 5-2. Errors (Continued)

Number Error String Cause

-224
-230
-240

-241

-272

-273

-276

-277

-278

-300
-310
-321

-330

-350

-400
-410

Illegal parameter value
Data corrupt or stale
Hardware error

Hardware missing

Macro execution error

Illegal macro label

Macro recursion error

Macro redefinition not allowed

Macro header not found

Device-specific error
System error
Out of memory

Self-test failed
Self-test failed; CPU failure
Self-test failed; ROM failure
Self-test failed; RAM failure
Self-test failed; EEPROM failure
Self-test failed; GPIB failure
Self-test failed; QSPI failure
Self-test failed; FPGA failure
Self-test failed; front-end failure
Self-test failed; measurement failure
Self-test failed; interpolator failure

Queue overflow

Query error
Query INTERRUPTED

Used where exact value, from a list of possible values, was expected.
No valid data available. New measurement started but not completed.
Indicates that a legal program command or query could not be executed because of
a hardware problem in the Counter.
Indicates that a legal program command or query could not be executed because of
missing Counter hardware. For example, the Channel 3 option was not installed.
Indicates that a syntactically legal macro program data sequence could not be
executed due to some error in the macro definition.
Indicates that the macro label defined in the *DMC command was a legal string
syntax, but it could not be accepted by the Counter. For example, the label was too
long, the same as a common command header, or contained invalid header syntax.
Indicates that a syntactically legal macro program data sequence could not be
executed because the Counter found the maximum recursion level of four was
exceeded.
Indicates that a syntactically legal macro label in the *DMC command could not
be executed because the macro label was already defined (see IEEE 488.2).
Indicates that a syntactically legal macro label in the *GMC? query could not be
executed because the header was not previously defined.
This is the generic device-dependent error.
Indicates that a system error occurred.
Indicates that the Counter has detected that insufficient memory is available. For
example, this error will eventually occur on a *DMC, once the macro memory is
filled with previously defined macros.
Indicates at least one failure occurred when *TST? was executed.
Power-on self test detected this hardware failure.
Power-on self test detected this hardware failure.
Power-on self test detected this hardware failure.
Power-on self test detected this hardware failure.
Power-on self test detected this hardware failure.
Power-on self test detected this hardware failure.
Power-on self test detected this hardware failure.
Power-on self test detected this hardware failure.
Power-on self test detected this hardware failure.

Power-on self test detected this hardware failure.

Indicates that there is no room in the error queue and an error occurred but was not
recorded.
This is the generic query error.
Indicates that a condition causing an INTERRUPTED Query error occurred. For
example, a query followed by DAB or GET before a response was completely sent.

Table 5-2. Errors (Continued)

Number Error String Cause

Errors
Error Types

5-10

-420

-430

-440

+2000
+2002
+2004

+2005
+2007
+2008

+2009

+2010

+2011

+2012
+2013

Query UNTERMINATED

Query DEADLOCKED

Query UNTERMINATED
after indefinite response

Offset calibration on channel 1 failed
Gain calibration on channel 1 failed
Interpolator calibration failed

Oscillator calibration failed
Measurement hardware calibration failed
Measurement interpolator calibration failed

No valid external timebase

External timebase failed during
measurement

Recall setup failed; hardware failure
Recall setup failed; empty register
Save setup failed
EEPROM failed

Indicates that a condition causing an UNTERMINATED Query error
occurred. For example, the Counter was addressed to talk and an incomplete
program message was received.
Indicates that a condition causing a DEADLOCKED Query error occurred.
For example, both input buffer and output buffer are full and the Counter
cannot continue.
Indicates that a query was received in the same program message after a
query requesting an indefinite response (for example, *IDN? or *OPT?) was
executed.

:DIAGnostic:CALibration:INP:OFFS:AUTO ONCE failed.
:DIAGnostic:CALibration:INP:GAIN:AUTO ONCE failed.
:DIAGnostic:CALibration:INTerpolator:AUTO ONCE, *CAL?, or
:CALibration[:ALL]? failed.

:DIAGnostic:CALibration:ROSCillator:AUTO ONCE failed.
A measurement calibration failed on the last measurement.
Interpolator calibration failed on the last measurement; therefore, no valid
measurement was taken.
You have selected external reference and there is no external reference
applied to the rear-panel Ref In connector, or the external signal is not an
allowed frequency.
You have selected the auto reference mode and the Counter detected that
the external reference became invalid during the measurement. Therefore,
the current result is not valid, and the Counter switches to using the internal
reference.
*RCL failed.
*RCL failed because the register specified for recall is empty.
*SAV failed, or *RCL couldn't save to register 0.
A request to update a setting which is stored in the EEPROM
(:SYST:COMM:SER:TRAN:BAUD, :SYST:COMM:SER:TRAN:PAR,
:SYST:COMM:SER:TRAN:PACE, :SYST:COMM:SER:CONT:DTR,
:DISP[:WIND]:TEXT:RAD, :CAL[:DATA], or :DIAG:CAL: ...) resulted in a
hardware failure.

Index-1

*RST, 4-116
affected setup, 2-32
unaffected setup, 2-32, 2-34

*RST Response, 2-32
*RST summary list, 2-32
<numeric value>, 3-12
9.91E37, 3-18

A
abbreviated commands, 3-9

Applications, 1-5
arbitrary block, 3-11
arming, 2-10
ASCII, 4-41
ASCII format, 3-61
Assumptions, 1-6
auto-trigger, 4-44, 4-45, 4-71

B

Boolean, 3-11

C
calibrating status bit, 3-32
calibration, 4-26

reference oscillator, 4-34
remote, 4-32
security code, 4-28
security state, 4-28
unsecure, 4-28

calibration error status bit, 3-35, 3-36
clear, 4-100
CME, 3-26
comma, 3-8, 3-12, 3-16
command

abbreviated, 3-9
keyword, 3-7
parameter, 3-11

command error
definition, 5-4
status bit, 3-27

command warning status bit, 3-35, 3-36
commands to set Counter for optimal

throughput, 3-37
common command

format, 3-7
syntax, 3-8

common commands
definition, 2-17
summary list, 2-18
syntax, 2-17

Common Commands Summary
Table, 2-18

Common Commands, IEEE 488.2, 4-99
*CAL?, Calibration, 4-99
*CLS, Clear Status, 4-100
*DDT, Define Device Trigger Command,

4-101
*DMC, Define Macro

Command, 4-102
*EMC, Enable Macro

Command, 4-103
*EMC?, Enable Macro

Command, 4-103
*ESE, Standard Event Status Enable, 4-

104
*ESE?, Standard Event Status Enable

Query, 4-104
*GMC?, Get Macro Contents

Query, 4-107
*IDN?, Identificarion Query, 4-108
*LMC?, Learn Macro Query, 4-109
*OPC, Operation Complete, 4-110
*OPC?, Operation Complete

Query, 4-111
*OPT?, Option Identification, 4-112
*PMC, Purge Macro

Command, 4-113

Index

address, GPIB, 3-4

Commands, 2-20
Agilent 53131A/132A SCPI Subsystem

short form, 3-55
syntax, 3-9
terminator, 3-13
terminators, 3-8

Basic, using, 3-60

Index

Index-2

*RCL, Recall, 4-114
*RST, Reset, 4-116
*SAV, Save, 4-117
*SRE, Service Request Enable, 4-119
*SRE?, Service Request Enable Query, 4-

119
*STB?, Status Byte Query, 4-120
*TRG, Trigger, 4-121
*TST?, Self-Test Query, 4-122
*WAI, Wait-to-Continue, 4-123
ESR?, Event Status Register

Query, 4-106
computing statistics status

bit, 3-32, 3-33
condition register, 3-28, 3-30
CONFigure with INITiate and FETCh?

using, 4-66
CONFigure with READ

using, 4-66

conformance
IEEE488.1, 3-7
IEEE488.2, 2-16, 2-17, 3-7
SCPI, 2-16, 3-7

connecting the Counter to a
computer, 3-6

connector
RS-232, 4-90

D
data, measurement, 4-69
date code, firmware, 4-108
DCL, 4-31
DDE, 3-26
decimal point, 3-11, 3-18
DEG, 3-12
Device Clear, 4-31
device clear, 4-31
device trigger, 4-101
device-dependent error

definition, 5-5
device-specific error

status bit, 3-27

digits arming, 2-10
display, 4-37

enable, 4-36
display results, 3-45
displaying errors, 5-2
double-quoted string

sending a double-quoted string, 3-60
DT, 4-101
duty cycle, 4-77

E
EOI, 3-13
error

command, 5-4
displaying, 5-2
execution, 5-5
how to query, 5-2
list, 5-7
messages, 5-7
query, 3-27, 4-92, 5-6
queue, 5-3
type, 5-4

errors list, 5-7
ESB, 3-23, 3-24
event enable register, 3-28, 3-31
event register, 3-28, 3-31
EXE, 3-26
execution error

definition, 5-5
status bit, 3-27

external arming, 2-10

F
fail limit test, 4-14
fall time, 4-77
firmware

date code, 4-108
revision, 4-108

format
ASCII, 4-41
REAL, 4-41

configuring the GPIB, 3-4

Index

Index-3

frequency, 4-59, 4-73, 4-77
frequency ratio, 4-61, 4-77
front panel to SCPI command

maps, 2-3
function, 4-59, 4-77

G
gating, 2-10
GET, 4-42
Getting Started, 1-3
group execute trigger, 4-42
Group Execute Trigger, GET, 4-42

H
How to Use This Guide, 1-3
hysteresis, 4-69
HZ, 3-12

I
IEEE 488.2

summary list, 2-18
IEEE 488.2 Common

Commands, 2-17
IEEE488.1

conformance, 3-7
obtaining copy of standard, 1-7

IEEE488.2
common commands, 2-17
conformance, 2-16, 2-17
obtaining copy of standard, 1-8
syntax, 3-8

in limit event status bit, 3-32, 3-33
initiate, 4-44
initiate measurements, 4-44

input
attenuation, 4-48
coupling, 4-48, 4-50
impedance, 4-49, 4-50
low-pass filter, 4-48

interpolator
automatic calibration, 4-32
calibration, 4-26, 4-33

K
key queue, 4-94
keyword, 3-10

optional, 3-10
separator, 3-9

L
Learning to Program the

Counter, 1-4
level, 4-71
limit

fail, 4-14
graph, 4-13
lower, 4-16
pass count, 4-17
test, 4-11

enable, 4-17
upper, 4-18

limit testing, 4-11
limt

fail count, 4-15
list of errors, 5-7
literal, 3-11, 3-19
local, 3-6

M
macros, 3-54

define, 3-54, 4-102
enable, 4-103
get contents, 4-107
labels, 4-109
memory, 4-68
purge, 4-113

masked, 4-38

configuration, 3-4
operating modes, 3-4

Addressed (talk/listen), 3-4
Talk-only, 3-4

GPIB

GPIB operating modes

Index

Index-4

math, 4-7
enable, 4-10
offest, scale, 4-7
offset, 4-10
scale, 4-10

math/limit operations, 3-51
MAV, 3-23
MAXimum, 3-12
maximum, 4-19
maximum value, 3-11
mean, 4-19
MEAsure

using, 4-65
measure, 4-52
measurement functions, 4-77

See function, 4-59
measurement instructions

commands
definition, 4-52

measuring status bit, 3-32, 3-33
memory, 4-68
messages

program, 3-14
response, 3-16

MINimum, 3-12
minimum, 4-19
minimum value, 3-11
multipliers, 3-13

N
N, 4-20
negative pulse width, 4-77
negative transition filter

register, 3-28
new line, 3-11, 3-19
non-decimal numeric, 3-11
Not a Number

9.91E37, 3-18
NR1, 3-18
NR2, 3-18
NR3, 3-18
NRf, 3-11

O
offset/scale, 4-7
OHM, 3-12
OPC, 3-26
operation complete, 4-110
operation complete status bit, 3-26
operation status register

group, 3-28, 3-32
optimizing throughput, 3-37
Optimizing Throughput Results for Different

Computers, 3-39
optional keyword, 3-10
options

identifying, 4-112
OSB, 3-23, 3-24
oscillator

reference, 4-79
out of limit event status bit, 3-35, 3-36

P
parameter separator, 3-12
Parameter types

Boolean, 3-11
parameter types, 3-11

literal, 3-11
string, 3-11

pass limit test, 4-17
PCT, 3-12
peak-to-peak voltage, 4-64, 4-77
period, 4-63, 4-77
phase, 4-77
PON, 3-26
positive pulse width, 4-77
positive transition filter register, 3-28
post-processing, 4-9, 4-19
power on status bit, 3-26, 3-27
power-on, 3-24, 3-28, 3-32
preset, 4-85
print, 4-43
program messages

definition, 3-14
syntax, 3-14

Index

Index-5

program the Counter for math/limit
operations, 3-51

program the Counter for status reporting, 3-
40

program the Counter to define
macros, 3-54

program the Counter to display
results, 3-45

Program the Counter to Synchronize
Measurements, 3-48

programming examples, 3-60
programming for

display results, 3-45
macros, 3-54
math/limit operations, 3-51
status reporting, 3-40
synchronizing measurements, 3-48

Programming Guide Contents, 1-6
programs

examples, 3-61
writing SCPI (reference

flowchart), 3-57

Q
QSB, 3-23
query, 3-12, 3-16
query error, 5-6
query parameters

<numeric value>, 3-12
MAXimum, 3-12
MINimum, 3-12

Questionable Data/Signal Status Register
Group, 3-34

questionable data/signal status
register group, 3-28

queue
error, 5-2
key, 4-94
output, 4-111

QuickBASIC, using, 3-61
QYE, 3-26

R
radix, 3-18
ratio, 4-77
ratio, frequency, 4-61
reading an error, 5-2
REAL, 4-41
recall, 4-114
reference oscillator

calibration, 4-34
reference, oscillator, 4-79
Related Documentation, 1-7
remote, 3-6
Remote Error (Flashing) indicator, 3-6
reset, 4-116
resolution of the current

measurement, 4-35
RESolution query, 4-35
response message syntax, 3-16
response messages, 3-16

data types, 3-18
results

display, 4-37
math, 4-7
query, 4-7, 4-14, 4-19
raw, 4-37
statistics, 4-19

revision
firmware, 4-108

rise time, 4-77
RQS/MSS, 3-23, 3-24
RS-232, 4-43
RS-232 connector, 4-90

S
S, 3-12
save, 4-117
scale, 4-7
scale/offset, 4-7
SCPI

command format, 3-7
conformance, 2-16
obtaining copy of standard, 1-7
query format, 3-7
version, 1-2, 2-16, 4-95

Index

Index-6

SCPI Command Summary
Table, 2-21

SCPI programs, how to write, 3-57
SDCL, 4-31
security code, 4-28
security state, 4-28
selected device clear, 4-31
self-calibration, 4-26
self-test, internal, 4-122
sensitivity, 4-69
separator

keyword, 3-9
parameter, 3-12

serial control, 4-90
serial port, 4-43
service request enable

register, 3-24, 4-119
short form, 3-55
single-quoted string

sending a single-quoted string, 3-60
slope, 4-72
standard deviation, 4-19
Standard Event Status Enable Register, 4-104
standard event status enable

register, 3-28
Standard Event Status Register, 4-106
standard event status register, 3-25
statistics, 4-19

enable, 4-21
filter, 4-23
maximum, 4-22
mean, 4-22
minimum, 4-22
N, 4-20
results, 4-19
standard deviation, 4-22

stats, 4-19
status

operation, 4-82
preset, 4-85

Status Byte Register, 4-120
status byte register, 3-22, 4-120

status reporting, 3-40
flowchart, 3-43
summary of all registers, 3-20

stop, 3-10
string, 3-11, 3-19

parameters, 3-60
subsystem command

syntax, 3-8
Subsystem Commands, 4-4

:ABORt, 4-4
:CALCulate, 4-5
:CALCulate[1], 4-7

:CALCulate[1]:DATA?, 4-7
:CALCulate[1]:FEED, 4-8
:CALCulate[1]:IMMediate, 4-8
:CALCulate[1]:IMMediate:

AUTO, 4-9
:CALCulate[1]:MATH, 4-9

:CALCulate2
:CALCulate2:FEED, 4-11
:CALCulate2:IMMediate, 4-11
:CALCulate2:IMMediate:

AUTO, 4-12
:CALCulate2:LIMit, 4-12

:CALCulate3, 4-19
:CALCulate3:AVERage, 4-19
:CALCulate3:DATA?, 4-22
:CALCulate3:FEED, 4-23
:CALCulate3:LFILter, 4-23
:CALCulate3:PATH?, 4-25

:CALibration, 4-26
:CALibration:ALL]?, 4-26
:CALibration:COUNt?, 4-26
:CALibration:DATA, 4-27
:CONFigure, 4-30
:DIAGnostic, 4-32

:CALibration:INPut[1|2]:GAIN:AUT
O, 4-32

:CALibration:INPut[1|2]:
OFFSet:AUTO, 4-33

:CALibration:INTerpolator:
AUTO, 4-33

BASIC, 3-60

Index

Index-7

:CALibration:STATus?, 4-34
:MEASure:RESolution?, 4-35
:CALibration:ROSCillator:

AUTO, 4-34
:DISPlay, 4-36

:DISPlay:[WINDow]:TEXT:
FEED, 4-37, 4-38

:DISPlay:ENABle, 4-36
:DISPlay:MENU[:STATe], 4-36
:DISPlay[:WINDow]:TEXT:

RADix, 4-39
:DISPlay[:WINDow]:TEXT:

MASK, 4-38
:FETCh, 4-40
:FORMat, 4-41

:FORMat[:DATA], 4-41
:HCOPy, 4-43
:INITiate, 4-44

:INITiate:AUTO, 4-44
:INITiate:CONTinuous, 4-44
:INITiate[:IMMediate], 4-46

:INPut[1|2], 4-48
:INPut[1|2]:ATTenuation, 4-48
:INPut[1|2]:COUPling, 4-48
:INPut[1|2]:FILTer[:LPASs]:

FREQuency?, 4-49
:INPut[1|2]:FILTer[:LPASs]

[:STATe], 4-48
:INPut[1|2]:IMPedance, 4-49

:INPut3, 4-50
:INPut3:COUPling?, 4-50
:INPut3:IMPedance?, 4-50

:MEASure, 4-51
:MEMory, 4-68

:MEMory:DELete:MACRo, 4-68
:MEMory:FREE:MACRo?, 4-68
:MEMory:NSTates?, 4-68

:STATus, 4-82
:STATus:OPERation, 4-82
:STATus:PRESet, 4-85
:STATus:QUEStionable, 4-86

:SYSTem, 4-90
:SYSTem:COMMunicate, 4-90
:SYSTem:ERRor?, 4-92
:SYSTem:KEY, 4-94
:SYSTem:KEY:LOG?, 4-95
:SYSTem:VERSion?, 4-95

:TRACe, 4-96
:TRACe:CATalog?, 4-96
:TRACe[:DATA] OFFSET, 4-96
:TRACe[:DATA] SCALE, 4-97

:TRIGger, 4-98
:TRIGger:TRIGger:COUNt:

AUTO, 4-98
[:SENSe]

[:SENSe]:DATA?, 4-69
[:SENSe]:EVENt[1|2], 4-69
[:SENSe]:EVENt3, 4-72
[:SENSe]:FREQuency, 4-73
[:SENSe]:FREQuency:EXPected

[1|2|3]:AUTO ON, 4-77
[:SENSe]:FUNCtion[:ON], 4-77
[:SENSe]:ROSCillator, 4-79

:CALibration:SECurity, 4-28
:Measurement Instructions

:CONFigure, 4-53
Measurement Instructions, 4-52

:CONFigure?, 4-54
:FETCh?, 4-55
:MEASure query, 4-56
:READ?, 4-57
Descriptions of the Measurement

Functions— <function>, 4-59
How to Use the Measurement

Instruction Commands, 4-65
Subsystem Commands:

CALCulate2, 4-11
Subsystem Commands[:SENSe], 4-69
suffix

elements, 3-12
multiplers, 3-13

suffix, multipler, 3-13
suffixes, 3-12

Index

Index-8

summary bits, 3-22
synchronizing measurements, 3-48
syntax

program messages, 3-14
response messages, 3-16

T
terminator

command, 3-13
throughput, 3-37
time arming, 2-10
time interval, 4-77
totalize, 4-77
transition filter, 3-30

negative, 4-88
positive, 4-88

trigger, 4-72
device, 4-101
levels, 4-70, 4-71
sensitivity, 4-69
slope, 4-72

trigger command, 4-121
Turbo C, using, 3-61

U
Unaffected by *RST, 2-34
units, 3-12
unsecure, 4-28
using internal reference status

bit, 3-32, 3-33
using the scale and offset over

V
V, 3-12
version, SCPI, 4-95
voltage

maximum, 4-77
minimum, 4-77

voltage maximum, 4-62
voltage minimum, 4-62

W
writing programs, general, 3-57

X
x1, 4-48
x10, 4-48

GPIB, 3-52

Warranty (contd)

Buyer shall pay all shipping
charges, duties, and taxes for

another country.

firmware will be uninterrupted or
error free.

Limitation of Warranty

The foregoing warranty shall not
apply to defects resulting from
improper or inadequate
maintenance by Buyer, Buyer-
supplied software or interfacing,
unauthorized modification or
misuse, operation outside the
environmental specifications for
the product, or improper site
preparation or maintenance.

NO OTHER WARRANTY IS

WARRANTIES OR
MERCHANTABILITY AND
FITNESS FOR A
PARTICULAR PURPOSE.

Exclusive Remedies

THE REMEDIES PROVIDED
HEREIN ARE BUYER'S SOLE

BE LIABLE FOR ANY
DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL
DAMAGES, WHETHER
BASED ON CONTRACT,
TORT, OR ANY OTHER
LEGAL THEORY.

Assistance

Product maintenance agreements
and other customer assistance
agreements are available for

For any assistance, contact your

Safety Considerations
(contd)

WARNING
ANY INTERRUPTION OF
THE PROTECTIVE
GROUNDING CONDUCTOR
(INSIDE OR OUTSIDE THE
INSTRUMENT) OR
DISCONNECTING THE
PROTECTIVE EARTH
TERMINAL WILL CAUSE
A POTENTIAL SHOCK
HAZARD THAT COULD
RESULT IN PERSONAL
INJURY. (GROUNDING ONE
CONDUCTOR OF A TWO
CONDUCTOR OUT-LET IS
NOT SUFFICIENT
PROTECTION.)

Whenever it is likely that the
protection has been impaired, the
instrument must be made
inoperative and be secured
against any unintended operation.

If this instrument is to be
energized via an autotransformer
(for voltage reduction) make sure
the common terminal is
connected to the earthed pole
terminal (neutral) of the power
source.

Instructions for adjustments
while covers are removed and for
servicing are for use by service-
trained personnel only. To avoid
dangerous electric shock, do not
perform such adjustments or
servicing unless qualified to do
so.

For continued protection against
fire, replace the line fuse(s) only
with 250V fuse(s) of the same
current rating and type (for
example, normal blow, time
delay). Do not use repaired fuses
or short circuited fuseholders.

Acoustic Noise Emissions

LpA<47 dB at operator position,
at normal operation, tested per
ISO 7779. All data are the results
from type test.

GERAeUSCHEMISSION

LpA<47 dB am Arbeits platz,
normaler Betrieb, geprueft nach
DIN 45635 Teil 19. DieAnbagen
beruhen auf Ergebnissen von
Typpruefungen.

Continued from front matter . . .

For warranty service or repair, this
product must be returned to a ser-
vice facility designated by Agilent.
Buyer shall prepay shipping
charges to Agilent and Agilent
shall pay shipping charges to return
the product to Buyer. However,

products returned to Agilent from

AND EXCLUSIVE REMEDIES.
AGILENT SHALL NOT

Agilent Technologies products.

nearest Agilent Technologies
Sales and Service Office.

DISCLAIMS THAT IMPLIED
AGILENT SPECIFICALLY
EXPRESSED OR IMPLIED.

does not warrant that the operation
of the instrument, or software, or

on that instrument. Agilent
instructions when properly installed
will execute its programming
Agilent for use with an instrument
and firmware designed by
Agilent warrants that its software

	Table of Contents
	Chapter 1 Before You Start ...
	Chapter 2 Commands Summary
	Chapter 3 Programming Your Counter for Remote Operation
	Chapter 4 Commands Reference
	Chapter 5 Errors
	Index
	G

