Keysight S9309xB PNA Spectrum Analysis Application

(for synthesizer revision 7)

Technical Specifications

Documentation Warranty

THE MATERIAL CONTAINED IN THIS DOCUMENT IS PROVIDED "AS IS," AND IS SUBJECT TO BEING CHANGED, WITHOUT NOTICE, IN FUTURE EDITIONS. FURTHER, TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, KEYSIGHT DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED WITH REGARD TO THIS MANUAL AND ANY INFORMATION CONTAINED HEREIN, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. KEYSIGHT SHALL NOT BE LIABLE FOR ERRORS OR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, USE, OR PERFORMANCE OF THIS DOCUMENT OR ANY INFORMATION CONTAINED HEREIN. SHOULD KEYSIGHT AND THE USER HAVE A SEPARATE WRITTEN AGREEMENT WITH WARRANTY TERMS COVERING THE MATERIAL IN THIS DOCUMENT THAT CONFLICT WITH THESE TERMS, THE WARRANTY TERMS IN THE SEPARATE AGREEMENT WILL CONTROL.

U.S. Government Rights

U.S. Government Rights. The Software is "commercial computer software," as defined by Federal Acquisition Regulation ("FAR") 2.101. Pursuant to FAR 12.212 and 27.405-3 and Department of Defense FAR Supplement ("DFARS") 227.7202, the U.S. government acquires commercial computer software under the same terms by which the software is customarily provided to the public. Accordingly, Keysight provides the Software to U.S. government customers under its standard commercial license, which is embodied in its End User License Agreement (EULA), a copy of which can be found at http://www.kevsight.com/find/sweula. The license set forth in the EULA represents the exclusive authority by which the U.S. government may use, modify, distribute, or disclose the Software. The EULA and the license set forth therein, does not require or permit, among other things, that Keysight: (1) Furnish technical information related to commercial computer software or commercial computer software documentation that is not customarily provided to the public; or (2) Relinquish to, or otherwise provide, the government rights in excess of these rights customarily provided to the public to use, modify, reproduce, release, perform, display, or disclose commercial computer software or commercial computer software documentation. No additional government requirements beyond those set forth in the EULA shall apply, except to the extent that those terms, rights, or licenses are explicitly required from all providers of commercial computer software pursuant to the FAR and the DFARS and are set forth specifically in writing elsewhere in the EULA. Keysight shall be under no obligation to update, revise or otherwise modify the Software. With respect to any technical data as defined by FAR 2.101, pursuant to FAR 12.211 and 27.404.2 and DFARS 227.7102, the U.S. government acquires no greater than Limited Rights as defined in FAR 27.401 or DFAR 227.7103-5 (c), as applicable in any technical data.

Table of Contents

Table 1. PNA "B" Model Spectrum Analysis Application Software	4
Definitions	5
Frequency and Time Specifications	6
Table 2. Frequency Specifications	6
Table 3. Time Specifications	7
Amplitude Accuracy and Range Specifications	8
Table 4. Amplitude Range Specifications	8
Table 5. SA Detector Accuracy ¹ , Without Frequency-band Crossing (dB) - Specifications	9
Table 6. SA Detector Accuracy ¹ , Without Frequency-band Crossing (dB) - Specifications	10
Table 7. SA Detector Accuracy, At Frequency-band Crossing ¹ (dB) - Specifications	11
Table 8. SA Detector Accuracy, At Frequency-band Crossing ¹ (dB) - Specifications	12
Table 9. Input Attenuation ¹ Switching Uncertainty (dB) - Supplemental Performance Data	13
Table 10. Input VSWR ¹ – Specifications to 26.5 GHz	13
Table 11. Input VSWR ¹ – Specifications to 50 GHz	14
Table 12. Input VSWR ¹ – Specifications to 70 GHz	14
Table 13. Input VSWR – Specification	15
Table 14. Input VSWR ¹ , with Option S93029B - Specifications	16
Table 15. Other Amplitude Accuracy - Supplemental Performance Data	16
Dynamic Range Specifications	17
Table 16. Spurious Response - Supplemental Performance Data	17
Table 17. Displayed Average Noise Level (DANL) ¹ (dBm/Hz), At Test Ports - Specification	17
Table 18. Displayed Average Noise Level (DANL) (dBm/Hz), At Test Ports -	
Supplemental Performance Data	18
Table 19. Displayed Average Noise Level (DANL) ¹ (dBm/Hz), At Test Ports - Typical	20
Table 20. Second Harmonic Distortion (SHI) - Supplemental Performance Data	21
Table 21. Third Order Intermodulation Distortion (TOI) ¹ (dBm) - Characteristic	22
Table 22. DANL and Distortion Relative to Test Port Level (dB), All Options - Nominal	23
Table 23. Receiver Phase Noise (dBc/Hz), N5221B/22B/24B/25B/27B/41B/42B/49B/44B/45B/47B Supplemental Performance Data	- 25
Table 24. Receiver Phase Noise (dBc/Hz), N5290A - Typical	25
Table 25. Receiver Phase Noise (dBc/Hz), N5291A - Typical	25

This is a complete list of the technical specifications for the spectrum analyzer S9309X/S93090X (PNA "B" models) on PNA/PNA-X series of network analyzer, including the following models. See model specific document for the network analyzer specifications.

PNA Series Network Analyzer

- N5221B 10 MHz to 13.5 GHz
- N5222B 10 MHz to 26.5 GHz
- N5224B 10 MHz to 43.5 GHz
- N5225B 10 MHz to 50 GHz
- $\circ~$ N5227B 10 MHz to 67 GHz

PNA-X Series Network Analyzer

- N5249B 10 MHz to 8.5 GHz
- N5241B 10 MHz to 13.5 GHz with serial number MY5201/SG5201/US5201 and above
- N5242B 10 MHz to 26.5 GHz with serial number MY5202/SG5202/US5202 and above
- N5244B 10 MHz to 43.5 GHz with serial number MY5204/SG5204/US5204 and above
- N5245B 10 MHz to 50 GHz with serial number MY5205/SG5205/US5205 and above
- N5247B 10 MHz to 67 GHz

For N5241B/42B/44B/45B with earlier serial numbers, SA detector accuracy and DANL are characteristics and all other specifications and performance information are applied.

Spectrum analyzer capability is fully functional after enabling option S9309X/S93090X and performing IF response calibration without returning to Keysight service center. However, performance verification is required to warrant option 09x specified performances. Keysight advises this work to be done in one of Keysight service centers.

Table 1. PNA "B" Model Spectrum Analysis Application Software

"B" Model Software
S930900B – Spectrum analysis up to 8.5 GHz
S930901B – Spectrum analysis up to 13.5 GHz
S930902B – Spectrum analysis up to 26.5 GHz
S930904B – Spectrum analysis up to 43.5 GHz
S930905B – Spectrum analysis up to 50 GHz
S930907B – Spectrum analysis up to 70 GHz
S930909B – Spectrum analysis up to 90 GHz
S93093B – Spectrum analysis up to 120 GHz
S93094B – Spectrum analysis above 120 GHz

Definitions

All specifications and characteristics apply over a 25 $^{\circ}C \pm 5 ^{\circ}C$ range (unless otherwise stated) and 90 minutes after the instrument has been turned on.

Specification (spec.): Warranted performance. Specifications include guardbands to account for the expected statistical performance distribution, measurement uncertainties, and changes in performance due to environmental conditions.

Characteristic (char.): A performance parameter that the product is expected to meet before it leaves the factory, but that is not verified in the field and is not covered by the product warranty. A characteristic includes the same guardbands as a specification.

Typical (typ.): Expected performance of an average unit which does not include guardbands. It is not covered by the product warranty.

Nominal (nom.): A general, descriptive term that does not imply a level of performance. It is not covered by the product warranty.

Supplemental performance data (SPD): A performance parameter that is tested on a minimal set of products during design validation. It does not include guardbands, and is not covered by the product warranty.

Calibration: The process of measuring known standards to characterize a network analyzer's systematic (repeatable) errors.

Corrected (residual): Indicates performance after error correction (calibration). It is determined by the quality of calibration standards and how well "known" they are, plus system repeatability, stability, and noise.

Uncorrected (raw): Indicates instrument performance without error correction. The uncorrected performance affects the stability of a calibration.

Standard: When referring to the analyzer, this includes no options unless noted otherwise.

LFE (Low Frequency Extension: LFE is referred to in the tables below. For specific information refer to the Configuration Guide part number 5992-1465EN.

Frequency and Time Specifications

Table 2. Frequency Specifications

Description	Specification	Supplemental Information
Frequency Resolution	1 Hz	
Frequency Accuracy	± 0.7 ppm	
Initial Frequency Accuracy ¹	± 0.2 ppm	± 0.1 ppm
Frequency Stability		± 0.05 ppm, -10° to 70° C ² ± 0.5 ppm (first year) ³
Frequency Readout Accuracy (Start, Stop, Center, Marker)		±[(readout frequency x frequency reference accuracy) + (<1% x RBW)], nominal
Frequency Span		
Minimum/Maximum	10 Hz/analyzer's full span	
Resolution	1 Hz	
Sweep (Trace) Point Range	11 to 100,001	
Resolution Bandwidth (RBW)		
Range (-3 dB Bandwidth)	1.2 Hz to 3 MHz ⁴ in 10% steps	
Bandwidth Range Accuracy		$\pm 1\%,$ all RBW, except below 100 MHz with 3 MHz RBW
Selectivity (-60 dB/-3 dB)		Gaussian: 4.5:1, Flat top: 2.47:1, Kaiser: 3.82:1, Blackman: 3.58:1
Video Bandwidth Range ⁵	1.2 Hz to 3 MHz ⁶	

Verified after Factory Frequency Reference adjustment, or after adjustment at a Keysight Service Center.
 Assumes no variation in time.
 Assumes no variation in temperature. Stability generally improves over time.
 Under certain conditions, the RBW range is 0.6 Hz to 8 MHz.
 VBW is implemented by averaging to achieve a similar variance reduction effect for the same VBW value.
 Under certain conditions, the VBW range is 0.6 Hz to 8 MHz.

Table 3. Time Specifications

Description	Specification	Supplemental Information				
Sweep Time and Triggering						
Sweep Time Range	Auto					
Trigger Types	Continuous, Single, Group, Manual, External (MEAS TRIG, AUX1, AUX2)					
Trigger Delay Range	0 to 3 s					
Trigger Delay Resolution	1 us					
Measurement and Display Update Rate						
20 MHz Span, 3 kHz RBW, 3 kHz VBW		62 ms				
100 MHz Span, Auto RBW, Auto VBW		62 ms				
1 GHz Span, 3 kHz RBW, 3 kHz VBW		140 ms				
1 GHz Span, 300 kHz RBW, 300 kHz VBW		65 ms				
10 GHz Span, 3 kHz RBW, 3 kHz VBW		1200 ms				
10 GHz Span, 300 kHz RBW, 300 kHz VBW		240 ms				
Full Span, RBW/VBW = Preset (300 kHz)		N5249B: 210 ms N5221B/41B: 300 ms N5222B/42B: 540 ms N5224B/44B: 800 ms N5225B/45B: 890 ms N5227B/47B: 1170 ms				

Amplitude Accuracy and Range Specifications

Table 4. Amplitude Range Specifications

Description	Specification
Amplitude Range	
Measurement Range	DANL to maximum input level
Input Attenuator Range	N5290A/N5291A: none, N5227B/47B: 0 to 50 dB in 10 dB steps, All other models: 0 to 35 dB in 5 dB steps
Maximum Safe Input Level	Vary by analyzer model and option configuration. See maximum test port and receiver input level specifications on individual technical specifications.
Display Range	
Log Scale	0.001 to 500 dB/div in 0.001 steps
Linear Scale	10 divisions (settable from 2 to 30 divisions)
Scale Units	dB, dBm, dBmV, dBuV, dBmA U (no units), W (Watts), V (volts), A (amps)
Trace Detectors Types	Average, Sample, Peak, Normal, Negative Peak, Peak sample, Peak average, Fast Peak

Description	N5221B/22B/ 41B/42B/49B		N5224B/25B/ 44B/45B		N5227B/47B	
	Narrow IF Filter	Wide IF Filter	Narrow IF Filter	Wide IF Filter	Narrow IF Filter	Wide IF Filter
10 MHz to 250 MHz	± 0.2	± 0.25	$\pm 0.5^{2}$	± 0.5	$\pm 0.5^{2}$	± 0.5
250 MHz to 800 MHz	± 0.1	± 0.15	± 0.15	± 0.22	± 0.1	± 0.15
800 MHz to 3.2 GHz	± 0.1	± 0.15	± 0.1	± 0.16	± 0.1	± 0.12
3.2 GHz to 10 GHz	± 0.1	± 0.11	± 0.1	± 0.14	± 0.1	± 0.12
10 GHz to 26.5 GHz	± 0.11	± 0.16	± 0.1	± 0.14	± 0.1	± 0.12
26.5 GHz to 40 GHz			± 0.1	± 0.14	± 0.1	± 0.12
40 GHz to 50 GHz			± 0.1	± 0.14	± 0.11	± 0.12
50 GHz to 67 GHz					± 0.11	± 0.16
67 GHz to 70 GHz ³					± 0.1	± 0.1

¹ SA detector accuracy is residual error of IF response calibration. IF response is characterized with PNA's standard measurement class after power and S-parameter calibration. Therefore the SA total absolute amplitude accuracy includes power meter, S-parameter and S-parameter calibration. Therefore the SA total absolute amplitude accuracy includes power meter, S-parameter and SA detector accuracies. Add input attenuation switching uncertainty if receiver attenuator is changed after user calibration.
 ² 0.3 dB better with N5244B/45B/47B.
 ³ Typical for N5227B/47B.

Description	N5290A		N5291A	
	Narrow IF Filter	Wide IF Filter	Narrow IF Filter	Wide IF Filter
10 MHz to 250 MHz	± 0.5	± 0.5	± 0.5	± 0.5
250 MHz to 800 MHz	± 0.26	± 0.3	± 0.26	± 0.3
800 MHz to 3.2 GHz	± 0.26	± 0.3	± 0.26	± 0.3
3.2 GHz to 10 GHz	± 0.26	± 0.3	± 0.26	± 0.3
10 GHz to 26.5 GHz	± 0.26	± 0.3	± 0.26	± 0.3
26.5 GHz to 40 GHz	± 0.26	± 0.3	± 0.26	± 0.3
40 GHz to 50 GHz	± 0.26	± 0.3	± 0.26	± 0.3
50 GHz to 67 GHz	± 0.26	± 0.3	± 0.26	± 0.3
67 GHz to 70 GHz	± 0.28	± 0.32	± 0.28	± 0.32
70 GHz to 90 GHz	± 0.28	± 0.32	± 0.28	± 0.32
90 GHz to 120 GHz			± 0.28	± 0.32
120 GHz to 125 GHz ²			± 0.1	± 0.1

Table 6. SA Detector Accuracy¹, Without Frequency-band Crossing (dB) - Specifications

¹ SA detector accuracy is residual error of IF response calibration. IF response is characterized with PNA's standard measurement class after power and S-parameter calibration. Therefore the SA total absolute amplitude accuracy includes power meter, S-parameter and SA detector accuracies. Add input attenuation switching uncertainty if receiver attenuator is changed after user calibration. ² Typical for N5291A.

Description	N5221B/22B/ 41B/42B/49B		N5224B/25B/ 44B/45B		N5227B/47B	
	Narrow IF Filter	Wide IF Filter	Narrow IF Filter	Wide IF Filter	Narrow IF Filter	Wide IF Filter
50 MHz to 250 MHz	± 0.5	± 0.6	± 0.5	± 0.5	± 0.6	± 0.8
250 MHz to 800 MHz	± 0.5	± 0.6	± 0.5	± 0.5	± 0.6	± 0.8
800 MHz to 3.25 GHz	± 0.5	± 0.6	± 0.25	± 0.25	± 0.25	± 0.25
3.25 GHz to 8 GHz	± 0.25	± 0.25	± 0.25	± 0.25	± 0.25	± 0.25
8 GHz to 10 GHz	± 0.25	± 0.25	± 0.25	± 0.72	± 0.25	± 0.35
10 GHz to 13.5 GHz	± 0.25	± 0.25	± 0.41	± 0.72	± 0.25	± 0.35
13.5 GHz to 26.5 GHz	± 0.25	± 0.25	± 0.41	± 0.72	± 0.25	± 0.35
26.5 GHz to 49.95 GHz			± 0.41	± 0.25	± 0.25	± 0.35
49.95 GHz to 50 GHz			± 0.41	± 0.25	± 1.75	± 2.15
50 GHz to 50.05 GHz					± 1.75	± 2.15
50.05 GHz to 67 GHz					± 0.25	± 0.35

Table 7. SA Detector Accuracy, At Frequency-band Crossing¹ (dB) - Specifications

¹ SA detector accuracy with frequency-band crossing is tested at 0 Hz, ± 1 MHz, ± 10 MHz, and ±50 MHz offset from each band-crossing frequency. This residual error is applied to 0 Hz, ± 1 MHz, and ± 10 MHz offset with narrow antialias filter path, and to 0 Hz, ± 1 MHz, ±10 MHz, and ±50 MHz offset with wide anti-alias filter path.

Description	N5290A		N5291A	
	Narrow ² IF Filter	Wide ² IF Filter	Narrow ² IF Filter	Wide ² IF Filter
50 MHz to 250 MHz	± 0.6	± 0.8	± 0.6	± 0.8
250 MHz to 800 MHz	± 0.35	± 0.35	± 0.35	± 0.35
800 MHz to 3.25 GHz	± 0.35	± 0.35	± 0.35	± 0.35
3.25 GHz to 8 GHz	± 0.35	± 0.35	± 0.35	± 0.35
8 GHz to 10 GHz	± 0.35	± 0.35	± 0.35	± 0.35
10 GHz to 13.5 GHz	± 0.35	± 0.35	± 0.35	± 0.35
13.5 GHz to 26.5 GHz	± 0.4	± 0.4	± 0.4	± 0.4
26.5 GHz to 49.95 GHz	± 0.4	± 0.4	± 0.4	± 0.4
49.95 GHz to 50 GHz	± 0.4	± 0.4	± 0.4	± 0.4
50 GHz to 50.05 GHz	± 0.4	± 0.4	± 0.4	± 0.4
50.05 GHz to 67 GHz	± 0.4	± 0.5	± 0.4	± 0.5
67 GHz to 90 GHz	± 0.4	± 0.5	± 0.4	± 0.5
90 GHz to 110 GHz			± 0.55	± 0.65
110 GHz to 120 GHz			± 0.55	± 0.65
Sample SA d	etector residual error and acuracy	specification, wide IF filter, at freq	uency-band crossing, N5245A	
0.6				_
	55 50 5 5 5 5	xx x x	× ×× × ×	 50 GHz Rcv1 50 GHz Rcv2 50 GHz Rcv3

-0.4 * Wide IF Filter Spec (-) -0.6 жж ж xxx жж х х х × ж -0.8 -1 0 15 20 25 45 50 10 30 35 40 Freqeuncy (GHz)

жж

¹ SA detector accuracy with frequency-band crossing is tested at 0 Hz, ± 1 MHz, ± 10 MHz, and ±50 MHz offset from each band-crossing frequency. This residual error is applied to 0 Hz, ± 1 MHz, and ± 10 MHz offset with narrow anti-alias filter path, and to 0 Hz, ± 1 MHz, ±10 MHz, and ±50 MHz offset with wide anti-alias filter path.
² For Band Crossings at 24GHz, 40GHz and 80GHz, specification is ±1dB, and at 63.984GHz, specification is ± 1.75 dB.

Residu -0.2

жжж ж ж

ж

× Wide IF Filter Spec (+)

хх

Table 9. Input Attenuation ¹	Switching	Uncertainty ((dB) -	Supplemental	Performance Data
	omitoring	onoon tunity ((~~)	ouppionionitui	i onormanoo bata

Description	N5221B/22B/ 41B/42B/49B		N5224B/25B/ 44B/45B		N5227B/47B	
	5 to 30 dB	35 dB	5 to 20 dB	25 to 35 dB	10 to 40 dB	50 dB
10 MHz to 20 MHz	± 1.0	± 1.2	± 0.6	± 1.0	± 1.0	± 1.3
20 GHz to 26.5 GHz	± 1.5	± 1.7	± 0.6	± 1.0	± 1.0	± 1.3
26.5 GHz to 40 GHz			± 0.6	± 1.0	± 1.0	± 1.3
40 GHz to 50 GHz			± 0.7	± 1.1	± 0.15	± 2.2
50 GHz to 67 GHz					± 0.15	± 2.2

 $^{\rm 1}$ For the N5290A and N5291A systems, there are no input attenuators.

Table 10. Input VSWR¹ – Specifications to 26.5 GHz

Description	N5221B/22B Options 210, 410	N5221B/22B All Other Options (Except LFE)	N5221B/22B Options 205, 405	N5221B/22B Options 220, 420	N5241B/42B /49B All Options ² (Except LFE)	N5241B/42B /49B Options ² 205, 405, 220, 420
10 MHz to 50 MHz	1.135	1.785	2.1	2.1	1.785	2.1
50 MHz to 500 MHz	1.106	1.329	2.615	2.615	1.329	2.615
500 MHz to 3.2 GHz	1.135	1.329	2.615	2.615	1.329	2.615
3.2 GHz to 8 GHz	1.196	1.577	2.1	2.1	1.577	2.1
8 GHz to 10 GHz	1.329	1.577	2.1	2.1	1.577	2.1
10 GHz to 13.5 GHz	1.377	1.925	2.1	2.1	1.925	2.1
13.5 GHz to 16 GHz	1.433	1.925	2.1	2.1	1.925	2.1
16 GHz to 20 GHz	1.499	2.1	2.615	3.01	2.1	2.615
20 GHz to 24 GHz	1.671	2.1	2.615	3.01	2.1	3.01
24 GHz to 26.5 GHz	1.925	2.323	3.01	3.01	2.323	3.01

 $^{\rm 1}$ Tested with 0 dB source attenuator. VSWR is improved by increasing source attenuator value. $^{\rm 2}$ Without Option 029 or S93029A.

Table 11. Input VSWR¹ – Specifications to 50 GHz

Description	N5224B/25B Options 210, 410	N5224B/25B All Other Options	N5244B/45B All Options ²
10 MHz to 50 MHz	1.329	1.925 (2.323)	1.925 (2.323)
50 MHz to 200 MHz	1.173	1.253 (2.615)	1.377 (2.615)
200 MHz to 500 MHz	1.106	1.289 (2.615)	1.377 (2.615)
500 MHz to 3.2 GHz	1.196	1.377 (3.01)	1.499 (3.01)
3.2 GHz to 10 GHz	1.253	1.577 (2.323)	1.577 (3.01)
10 GHz to 13.5 GHz	1.329	1.785 (2.323)	1.785 (2.323)
13.5 GHz to 16 GHz	1.433	1.925 (2.615)	1.785 (2.323)
16 GHz to 20 GHz	1.433	1.925 (2.615)	1.785 (2.615)
20 GHz to 26.5 GHz	1.433	1.925 (3.01)	1.925 (3.01)
26.5 GHz to 46 GHz	1.577	2.323 (3.01)	2.615 (3.01)
46 GHz to 50 GHz	1.925	2.323 (3.01)	2.615 (3.01)

() With an LFE option installed. ¹ Tested with 0 dB source attenuator. VSWR is improved by increasing source attenuator value. ² Without Option 029 or S93029A.

Table 12. Input VSWR¹ – Specifications to 70 GHz

Description	N5227B Options 210, 410	N5227B All Other Options	N5247B All Options ²
10 MHz to 50 MHz	1.289	3.01 (3.01)	3.01 (3.01)
50 MHz to 200 MHz	1.135	1.785 (2.615)	1.785 (2.615)
200 MHz to 500 MHz	1.153	1.785 (2.615)	1.785 (2.615)
500 MHz to 3.2 GHz	1.253	2.615 (2.615)	2.615 (2.615)
3.2 GHz to 10 GHz	1.329	2.615 (2.615)	2.615 (2.615)
10 GHz to 13.5 GHz	1.433	3.01 (3.01)	3.01 (3.01)
13.5 GHz to 16 GHz	1.577	3.01 (3.01)	3.01 (3.01)
16 GHz to 20 GHz	1.577	2.615 (2.615)	2.615 (2.615)
20 GHz to 26.5 GHz	1.671	2.615 (2.615)	2.615 (2.615)
26.5 GHz to 43.5 GHz	1.925	3.01 (3.01)	3.01 (3.01)
43.5 GHz to 50 GHz	1.925	3.01 (3.01)	3.01 (3.01)
50 GHz to 60 GHz	2.323	2.615 (2.615)	2.615 (2.615)
60 GHz to 67 GHz	2.323	3.01 (3.01)	3.01 (3.01)
67 GHz to 70 GHz ³	1.785	1.925 (1.925)	1.925 (1.925)

() With an LFE option installed. ¹ Tested with 0 dB source attenuator. VSWR is improved by increasing source attenuator value. ² Without Option 029 or S93029A.

³ Typical

Table 13. Input VSWR – Specification

Description	N5290A All Options	N5291A All Options
10 MHz to 50 MHz	2.323	2.323
50 MHz to 200 MHz	3.570	3.570
200 MHz to 500 MHz	3.570	3.570
500 MHz to 2 GHz	3.570	3.570
2 GHz to 3.2 GHz	1.925	1.925
3.2 GHz to 10 GHz	2.323	2.323
10 GHz to 13.5 GHz	2.100	2.100
13.5 GHz to 16 GHz	2.100	2.100
16 GHz to 20 GHz	2.615	2.615
20 GHz to 24 GHz	2.323	2.323
24 GHz to 26.5 GHz	2.615	2.615
26.5 GHz to 40 GHz	3.570	3.570
40 GHz to 43.5 GHz	2.615	2.615
43.5 GHz to 50 GHz	3.010	3.010
50 GHz to 60 GHz	3.570	3.570
60 GHz to 64 GHz	3.010	3.010
64 GHz to 67 GHz	3.570	3.570
67 GHz to 90 GHz	3.010	3.010
90 GHz to 100 GHz		3.010
100 GHz to 110 GHz		4.420
110 GHz to 120 GHz		5.849

Table 14. Input VSWR¹, with Option S93029B - Specifications

Description	N5241B/42B/49B	N5244B/45B	N5247B
	Port 1, 2	Ports 1, 2	Ports 1, 2
10 MHz to 50 MHz	1.785 (2.1)	1.925	3.57 (3.57)
50 MHz to 500 MHz	1.329 (2.615)	1.377	1.785 (2.615)
500 MHz to 3.2 GHz	1.329 (2.615)	1.577	2.615 (2.615)
3.2 GHz to 10 GHz	1.577 (2.1)	1.785	3.01 (3.01)
10 GHz to 16 GHz	1.925 (2.1)	1.785	3.01 (3.01)
16 GHz to 20 GHz	2.1 (2.615)	1.785	3.01 (3.01)
20 GHz to 24 GHz	2.1 (3.01)	2.323	3.01 (3.01)
24 GHz to 26.5 GHz	2.323 (3.01)	2.323	3.01 (3.01)
26.5 GHz to 46 GHz		2.615	3.01 (3.01)
46 GHz to 50 GHz		3.01	3.01 (3.01)
50 GHz to 67 GHz			3.01 (3.01)

() With an LFE option installed. ¹ Tested with 0 dB source attenuator. VSWR is improved by increasing source attenuator value.

Table 15. Other	Amplitude	Accuracy	- Supplemental	Performance Data
	Ampiliado	Rooulacy	ouppionioniui	i chomianoc Data

RBW Switching Uncertainty	< ±0.02 dB, All RBW
Display Scale Fidelity	See dynamic accuracy specification in the analyzer document. Specification applied to SA measurement class with user calibration between -10 dBm and -40 dBm input power and measurement between +10 dBm and -120 dBm input power.

Dynamic Range Specifications

Table 16. Spurious Response - Supplemental Performance Data

Residual Response ¹	-80 dBm
	Mostly eliminated. Intermittent image response
Image Response	may be seen when making multi-tone or
	modulated signal measurements.
LO Related Spurious	Eliminated

¹ Tested with 1 kHz RBW, source off with test port terminated. Spurious is detected when the signal level is higher than 6-sigma of noise deviation from the noise-mean level.

Description	N5221B/ 22B	N5241B/ 42B/49B	N5224B/ 25B	N5244B/ 45B	N5227B	N5247B	N5290A	N5291A
10 MHz to 200 MHz	-94	-94	-84	-84	-84	-84	-81	-81
200 MHz to 800 MHz	-122	-122	-108	-108	-115	-115	-113	-113
800 MHz to 3.2 GHz	-135	-135	-130	-130	-130	-130	-125	-125
3.2 GHz to 8 GHz	-135	-135	-130	-130	-131	-131	-129	-129
8 GHz to 16 GHz	-132	-132	-133	-133	-134	-134	-129	-129
16 GHz to 20 GHz	-132	-132	-130	-130	-134	-134	-129	-129
20 GHz to 24 GHz	-129	-130	-130	-130	-134	-134	-129	-129
24 GHz to 26.5 GHz	-122	-121	-130	-130	-134	-134	-129	-129
26.5 GHz to 34 GHz			-124	-124	-122	-122	-120	-120
34 GHz to 50 GHz			-124	-124	-117	-117	-120	-120
50 GHz to 67 GHz					-116	-116	-120	-120
67 GHz to 70 GHz ²					-121	-121	-120	-120
70 GHz to 75 GHz							-120	-120
75 GHz to 90 GHz							-115	-115
90 GHz to 110 GHz								-115
110 GHz to 120 GHz								-108

Table 17. Displayed Average Noise Level (DANL)¹ (dBm/Hz), At Test Ports - Specification

¹ Tested with 10 kHz RBW, test port terminated, average detector, averaging type = Log, 0 dB attenuator, IF gain = max, image rejection = normal, random LO OFF. The specification is normalized to 1.2 Hz minimum available RBW,

applied to random LO ON, and improved by approximately 13 dB by reversing test port couplers.

² Typical for instruments only.

Table 18. Displayed Average Noise Level (DANL) (dBm/Hz), At Test Ports - Supplemental Performance Data

		compareu	to specification						
File	Trace/Chan	Response	Marker/Analysis	Stimulus	Utility	Help			
	Tr 1 B LogM 1	0.00dBm/ -20.	0dBm						
-20.00									
-30.00									
-40.00			-						
-50.00									
-60.00	N.								
-70.00	- Aller and a second						_		
-80.00	- Netwood	and all all and a gran	www.dust						
-90.00				and a second and the	- alan - alan da alan	mmmmm	a name and a second		
-100.00								a contract of the state of the	
-110.00									
120.00	Ch1: SA Start	10.0000 MHz	-	RBW 10 kH	z/VBW 1	0 kHz		Stop 8	800.000 MHz
	Tr 2 R LogM 1	0.00dBm/20	0dPm						
-20.00		0.000Din/ -20.							
-30.00									
-40.00									
-50.00									
-60.00									
-70.00									
-80.00									
-90.00									
-100.00									
-110.00									
100.00									
-120.00									
2	>Ch2: SA Start	t 800.000 MHz		RBW 10 kH	z/VBW 1	0 kHz		Stop (67.0000 GHz

Description	N5221B/ 22B	N5241B/ 42B/49B	N5224B/ 25B	N5244B/ 45B	N5227B	N5247B	N5290A	N5291A
10 MHz to 200 MHz	-97	-97	-87	-87	-87	-87	-92	-92
200 MHz to 800 MHz	-132	-133	-122	-122	-129	-129	-119	-119
800 MHz to 3.2 GHz	-140	-141	-135	-135	-137	-137	-130	-130
3.2 GHz to 8 GHz	-140	-141	-135	-135	-137	-137	-133	-133
8 GHz to 16 GHz	-139	-139	-140	-139	-141	-140	-133	-133
16 GHz to 24 GHz	-139	-139	-137	-137	-141	-140	-133	-133
24 GHz to 26.5 GHz	-136	-137	-137	-137	-141	-140	-133	-133
26.5 GHz to 34 GHz			-130	-130	-129	-129	-133	-133
34 GHz to 50 GHz			-130	-130	-125	-124	-124	-124
50 GHz to 67 GHz					-124	-124	-124	-124
67 GHz to 70 GHz					-121	-121	-124	-124
70 GHz to 90 GHz							-121	-121
90 GHz to 110 GHz								-121
110 GHz to 120 GHz								-115

Table 19. Displayed Average Noise Level (DANL)¹ (dBm/Hz), At Test Ports - Typical

¹ Tested with 10 kHz RBW, test port terminated, average detector, averaging type = Log, 0 dB attenuator, IF gain = max, image rejection = normal, random LO OFF. The specification is normalized to 1.2 Hz minimum available RBW, applied to random LO ON, and improved by approximately 13 dB by reversing test port couplers.

Table 20. Second Harmonic Distortion (SHI) - Supplemental Performance Data

Description	N5221B/22B/ 1 41B/42B/49B 4		N5224B/25B/ 44B/45B		N5227B/47B		
	Distortion (dBc)	TOI (dBm)	Distortion (dBc)	TOI (dBm)	Distortion (dBc)	TOI (dBm)	
500 MHz to 3.2 GHz	-72	20	-74	21	-76	22	
3.2 GHz to 5 GHz	-72	20	-74	21	-74	21	
5 GHz to 8 GHz	-68	18	-74	21	-74	21	
8 GHz to 10 GHz	-68	18	-74	21	-72	20	
10 GHz to 13.5 GHz	-62	15	-74	21	-72	20	
13.5 GHz to 20 GHz	-62	15	-68	18	-68	18	
20 GHz to 26.5 GHz	-50	9	-68	18	-68	18	
26.5 GHz to 40 GHz			-62	15	-64	16	
40 GHz to 47 GHz			-52	10	-56	12	
47 GHz to 50 GHz			-50	9	-50	9	
50 GHz to 60 GHz					-50	9	
60 GHz to 67 GHz					-40	4	

Table 21. Third Order Intermodulation Distortion (TOI)¹ (dBm) - Characteristic

¹ Tested with -16 dBm input at test port, 10 MHz tone separations, 0 dBm receiver attenuator. Negligible (very high TOI) at < 500 MHz input frequency due to test port coupler roll off.

Table 22. DANL and Distortion Relative to Test Port Level (dB), All Options - Nominal

Table 23. Receiver Phase Noise (dBc/Hz), N5221B/22B/24B/25B/27B/41B/42B/49B/44B/45B/47B – Supplemental Performance Data

Offset	CF = 1 GHz	CF = 3 GHz	CF = 10 GHz	CF = 20 GHz
100 Hz	-116	-108	-99	-88
1 kHz	-129	-126	-118	-112
10 kHz	-131	-132	-126	-120
100 kHz	-135	-136	-131	-126
1 MHz	-135	-138	-139	-132
10 MHz	-135	-138	-140	-138

Table 24. Receiver Phase Noise (dBc/Hz), N5290A - Typical

Offset	CF = 1 GHz	CF = 3 GHz	CF = 10 GHz	CF = 20 GHz	CF=50 GHz	CF=80 GHz	CF=90 GHz
1 kHz	-107	-98	-89	-83	-72	-70	-70
10 kHz	-112	-104	-93	-87	-79	-75	-75
100 kHz	-111	-100	-89	-83	-73	-70	-70
1 MHz	-127	-123	-113	-107	-96	-95	-95
10 MHz	-129	-132	-130	-128	-117	-115	-115

Table 25. Receiver Phase Noise (dBc/Hz), N5291A - Typical

Offset	CF=1 GHz	CF=3 GHz	CF=10 GHz	CF=20 GHz	CF=50 GHz	CF=80 GHz	CF=110 GHz	CF=125 GHz
1 kHz	-107	-98	-89	-83	-72	-70	-67	-66
10 kHz	-112	-104	-93	-87	-79	-75	-72	-72
100 kHz	-111	-100	-89	-83	-73	-70	-67	-67
1 MHz	-127	-123	-113	-107	-96	-95	-91	-90
10 MHz	-129	-132	-130	-128	-117	-115	-112	-105

This information is subject to change without notice. © Keysight Technologies 2021 Edition 2 December 17, 2021 Printed in USA \$9309-90001