应用指南
8 大技巧帮助您更好地使用 射频信号发生器进行测量
信号源可为各种元器件和系统测试应用提供精确且高度稳定的测试信号。信号发生器则增加了精确的调制功能,可以帮助模拟系统信号,从而进行接收机性能测试。本文旨在帮助您提高射频信号源的测量精度。在进行测试配置时,您可以通过这里的一个或多个技巧来获得更精确的数据。
技巧 1. - 减少信号源的有效谐波失真
为了精确测量谐波失真,需要使用频谱纯净的信号源和频谱分析仪。信号源的谐波失真和频谱分析仪的动态范围都是影响测量质量的重要因素。相比而言,信号源的影响通常会更大一些,其谐波失真一般比基频信号低 30-50 dB。图 1a 展示了典型的谐波失真测量结果。信号的谐波失真通常是用最大谐波幅度(dB)与基频信号幅度的比值来描述的。
使用低通滤波器可降低信号源的有效谐波失真,如图 1b 所示。选择低通滤波器的截止频率,以确保大部分的基频信号能够完好地通过,而谐波则受到大幅削弱。您可以使用频谱分析仪直接检验信号源/滤波器组合之后的性能。如果基频信号通过滤波器之后损耗比较大,那么在设置信号源输出电平时,应考虑到这种损耗。可以使用频谱分析仪来检查滤波器输出端的基本电平,或者如需实现更好的电平精度,则请参见“技巧 2”。
技巧 2.提高功率电平精度
在您的测试设置中,信号源与被测器件之间一般都会用到无源器件,例如电缆、滤波器或开关。这些器件会对被测器件的信号电平精度产生影响。输入信号的电平精度在某些应用中非常重要,比如在测量接收机的灵敏度时。为了对被测器件施加预定的功率,可以在测量之前进行以下测试。如图 2 所示,测试系统中包括信号发生器、配有功率传感器的功率计,以及测量中需要使用的电缆或开关。您需要熟悉功率计的校准和归零操作,以便根据功率传感器的参数来校准功率计,首先完成精确的功率测量。
注:功率计的测量精度取决于传感器的校准系数;请务必先将校准系数输入功率计,再进行校准。
您可以使用 USB 功率传感器或外置功率计来对功率电平进行校准。通常,USB 传感器使用起来更为简单,因为支持此类传感器的信号发生器可以自动将这一特定传感器的校准系数下载至信号发生器的存储器中。某些信号发生器还支持外置功率计,能够利用远程接口(如 LAN 或 GPIB)自动下载校准系数。完成对功率计的校准之后,将其测量频率设置为信号的频率。按图 2 所示,连接传感器用它代替被测器件,然后测量功率电平。如果功率计读数与信号源所示的电平存在差异,则使用信号源的幅度偏置功能进行必要的调整,以让信号源所示的功率电平与功率计的读数保持一致。在调整完特定频率的幅度之后,信号源将自动显示相同频率下不同幅度的正确值。请注意,许多信号发生器会自动执行此类校正,并在校正过程中应用功率传感器的校准系数,以便在各个频率下提供正确的输出。功率计的精度非常高(不确定度只有零点几 dB),因此可以为您保证功率电平的精确性。
技巧 3.提高频率精度
对于某些测量来说,激励信号的绝对频率最为重要,而其他测量只需要在多个信号之间保持准确的相对频率间隔即可。例如,要用已知的频率创建多音频输入,传统方法是将多个模拟信号发生器的输出组合在一起。每个信号源的频率精度取决于其内置的频率标准件。这些标准件很可能在频率上略有偏差,因此会导致测量结果存在相对频率误差。例如,假设您想要在两个 200 MHz 中心频率的信号之间设置 1 KHz的间隔,而信号源的老化率为 ± 1 x 10-6/年。在这种情况下,信号源的频率误差是 200 MHz x 1 x 10-6 = ±200 Hz。于是,该间隔可能会是 600 Hz 到 1400 Hz 之间的任何一个值(参见图 3)。为了提高精度,可以将两个信号源的时基连接在一起。将其中一个信号源的参考信号输出(通常位于机箱的后面板上)连接至另一个信号源的参考信号输入。现在,间隔的不确定度为 1 KHz x 10-6 或 0.001 Hz。
如果您使用的是矢量信号发生器,那么只需要一台这样的发生器即可创建多音频信号。由于所有的音频信号都是用同一个通用基带时钟频率生成的,所以它们相对的音频间隔将会非常精确。但如果信号的绝对频率很重要,那么可以寻找更精确的外部频率参考件来提高信号源的频率精度。为您的测试装置选择带有最精确时基的仪器,然后将所有其他设备都连接到这个参考上。某些仪器制造商会提供高稳定度的温控参考振荡器作为选件。这些频率和时间标准件十分精确,但价格也可能会非常高昂。
您可以使用内部标准件(在整个设备内使用统一的高精度频率参考)来提高频率精度。将信号发生器和所有其他设备连接到这个参考上。您可能需要使用信号分配放大器来保持适当的电平和阻抗匹配。注:使用外部频率参考时,其相位噪声可能会导致信号发生器的相位噪声性能下降。因此在使用之前,务必要注意外部参考信号源的相位噪声性能。
请下载此文档以了解更多信息。
您希望搜索哪方面的内容?