应用指南
频谱分析基础
本应用指南 150 介绍了扫描调谐超外差式频谱仪的基本原理,并探讨了频谱仪的主要功能以及最新进展。
本应用指南将帮助您深入了解自己所拥有的频谱仪或信号分析仪,使您可以最充分地发挥这种多功能仪器的最大效能。本文主要内容有:
第 1 章 引论 — 什么是频谱分析仪?
本应用指南介绍了扫描调谐超外差式频谱分析仪的基本原理和频谱分析仪的基础知识并探讨了频谱分析仪功能的新进展。从最基础的角度考虑,我们可以把频谱分析仪理解为一种频率选择性、峰值检测的电压表,它经过校准之后显示正弦波的有效值。应当强调的是,尽管我们常用频谱分析仪来直接显示功率,但它毕竟不是功率计。当然,只要知道了正弦波的某个值(例如峰值或平均值)和测量这个值时所用的电阻值,就能够校准电压表用来指示功率。数字技术的出现赋予了现代频谱分析仪更多的功能。本指南在介绍了频谱分析仪基本原理的同时也阐述了使用数字技术和数字信号处理技术赋予这类仪器的新功能。
频域对时域
在详细介绍频谱分析仪之前,读者也许会问:“什么是频谱?为何要对它进行分析?”我们已经习惯于用时间作为参照,来记录某时刻发生的事件。这种方法当然也适用于电信号。于是可以用示波器来观察某个电信号(或通过适当传感器能转换成电压的其他信号)的瞬时值随时间的变化,也就是在时域中用示波器观察信号的波形。
然而,傅立叶1理论告诉我们,时域中的任何电信号都可以由一个或多个具有适当频率、幅度和相位的正弦波叠加而成。换句话说,任何时域信号都可以变换成相应的频域信号,通过频域测量可以得到信号在某个特定频率上的能量值。通过适当的滤波,我们能将图 1-1 中的波形分解成若干个独立的正弦波或频谱分量,然后就可以对它们进行单独分析。每个正弦波都用幅度和相位加以表征。如果我们要分析的信号是周期信号(正如本书所研究的情况),傅立叶理论指出,所包含的正弦波的频域间隔是 1/T,其中 T 是信号的周期。
某些测量场合要求我们考察信号的全部信息 — 频率,幅度和相位,然而,即便不知道各正弦分量间的相位关系,我们也同样能实施许多的信号测量,这种分析信号的方法称为信号的频谱分析。频谱分析更容易理解,而且非常实用,因此本书首先在第 2 章介绍了如何使用频谱分析仪进行信号的频谱分析。为了正确地从时域变换到频域,理论上必须涉及信号在整个时间范围、即在正负无穷大的范围内的各时刻的值,不过在实际测量时我们通常只取一段有限的时间长度。
为什么要测量频谱?
在无线通信领域,人们非常关心带外辐射和杂散辐射。例如在蜂窝通信系统中,必须检查载波信号的谐波成分,以防止对其他有着相同工作频率与谐波的通信系统产生干扰。工程师和技术人员对调制到载波上的信息的失真也非常关心。三阶交调(复合信号的两个不同频谱分量互相调制)产生的干扰相当严重,因为其失真分量可能直接落入分析带宽之内而无法滤除。
频谱监测是频域测量的又一重要领域。政府管理机构对各种各样的无线业务分配不同的频段,例如广播电视、无线通信、移动通信、警务和应急通信等其他业务。保证不同业务工作在其被分配的信道带宽内是至关重要的,通常要求发射机和其他辐射设备应工作于紧邻的频段。在这些通信系统中,针对功率放大器和其他模块的一项重要测量是检测溢出到邻近信道的信号能量以及由此所引起的干扰。
电磁干扰(EMI)是用来研究来自不同发射设备的有意或无意的无用辐射。在此我们关心的问题是,无论是辐射还是传导(通过电力线或其他互导连线产生),其引起的干扰都可能影响其他系统的正常运行。根据由政府机构或行业标准组织制定的有关条例,几乎任何从事电气或电子产品设计制造的人员都必须对辐射电平与频率的关系进行测试。
我们经常需要对噪声进行测量。任何有源电路或器件都会产生额外噪声。通过测量噪声系数和信噪比(SNR)能够描述器件的性能及其对总体系统性能的影响。
请下载本文以了解更多关于频谱仪的工作原理相关信息和频谱分析仪的使用方法。
您希望搜索哪方面的内容?